
Document generated by Confluence on Feb 20, 2012 13:48 Page 1

System Engineering Information : Nspire Scripting Application Programming
Interface

This page last changed on Jan 13, 2012 by x0163721.

• Standard Libraries
• ¡ Built-in Functions

¡ Coroutine
¡ Math
¡ String
¡ Table
¡ Unimplemented

• 2D Editor
• ¡ newRichText

¡ applyFunction - DO NOT DOCUMENT
¡ canPaste - DO NOT DOCUMENT
¡ createChemBox
¡ createMathBox
¡ event - DO NOT DOCUMENT
¡ getExpression
¡ getExpressionSelection
¡ getText
¡ hasFocus
¡ hasSelection - DO NOT DOCUMENT
¡ isVisible
¡ move
¡ pasteExpression - DO NOT DOCUMENT
¡ registerFilter
¡ resize
¡ setAutoResize - DO NOT DOCUMENT
¡ setBorder
¡ setBorderColor
¡ setColorable
¡ setDisable2DinRT
¡ setExpression
¡ setFocus
¡ setFontSize
¡ setFormattedExpression - DO NOT DOCUMENT
¡ setFormattedText - DO NOT DOCUMENT
¡ setMainFont
¡ setReadOnly
¡ setSelectable
¡ setSizeChangeListener
¡ setSubScript - DO NOT DOCUMENT
¡ setSuperScript - DO NOT DOCUMENT
¡ setText
¡ setTextChangeListener
¡ setTextColor
¡ setVisible
¡ setWordWrapWidth

• Class Library
• ¡ class
• Clipboard Library
• ¡ addText

¡ getText
• Cursor Library
• ¡ set

¡ hide
¡ show

• Document Library
• ¡ markChanged
• Event Handling
• ¡ activate

¡ arrowDown
¡ arrowKey

Document generated by Confluence on Feb 20, 2012 13:48 Page 2

¡ arrowLeft
¡ arrowRight
¡ arrowUp
¡ charIn
¡ backspaceKey
¡ backtabKey
¡ clearKey
¡ construction
¡ contextMenu
¡ copy
¡ create
¡ createMathBox
¡ cut
¡ deactivate
¡ deleteKey
¡ destroy
¡ enterKey
¡ escapeKey
¡ getFocus
¡ getSymbolList
¡ grabDown
¡ grabUp
¡ help
¡ loseFocus
¡ mouseDown
¡ mouseMove
¡ mouseUp
¡ paint
¡ paste
¡ resize
¡ restore
¡ returnKey
¡ rightMouseDown
¡ rightMouseUp
¡ save
¡ tabKey
¡ timer
¡ varChange

• Graphics Library
• ¡ clipRect

¡ drawArc
¡ drawImage
¡ drawLine
¡ drawPolyLine
¡ drawRect
¡ drawString
¡ fillArc
¡ fillPolygon
¡ fillRect
¡ getStringHeight
¡ getStringWidth
¡ setColorRGB
¡ setFont
¡ setPen

• Image Library
• ¡ new

¡ copy
¡ height
¡ rotate
¡ width

• Locale Library
• ¡ name
• Math Library Extension
• ¡ eval

Document generated by Confluence on Feb 20, 2012 13:48 Page 3

¡ evalStr
¡ getEvalSettings
¡ setEvalSettings

• Physics Library
• ¡ Miscellaneous routines

¡ - INFINITY
- momentForBox
- momentForCircle
- momentForPoly
- momentForSegment

¡ Vectors
¡ - Vect

- add
- clamp
- cross
- dist
- distsq
- dot
- eql
- length
- lengthsq
- lerp
- lerpconst
- mult
- near
- neg
- normalize
- normalizeSafe
- perp
- project
- rotate
- rperp
- setx
- sety
- slerp
- slerpconst
- sub
- toangle
- unrotate
- x
- y

¡ Bounding Boxes
¡ - BB

- b
- clampVect
- containsBB
- containsVect
- expand
- intersects
- l
- merge
- setb
- r
- setl
- setr
- sett
- t
- wrapVect

¡ Bodies
¡ - Body

- activate
- angle
- angVel
- applyForce

Document generated by Confluence on Feb 20, 2012 13:48 Page 4

- applyImpulse
- data
- force
- isRogue
- isSleeping
- local2World
- kineticEnergy
- mass
- moment
- pos
- resetForces
- rot
- setAngle
- setAngVel
- setData
- setForce
- setMass
- setMoment
- setPos
- setPositionFunc
- setTorque
- setVel
- setVelocityFunc
- setVLimit
- setWLimit
- sleep
- sleepWithGroup
- torque
- updatePosition
- updateVelocity
- vel
- vLimit
- wLimit
- world2Local

¡ Shapes
¡ - BB

- body
- collisionType
- data
- friction
- group
- layers
- rawBB
- restitution
- sensor
- setCollisionType
- setData
- setFriction
- setGroup
- setLayers
- setRestitution
- setSensor
- setSurfaceV
- surfaceV

¡ Circle Shapes
¡ - CircleShape

- offset
- radius

¡ Polygon Shapes
¡ - PolyShape

- numVerts
- points
- vert

¡ Segment Shapes

Document generated by Confluence on Feb 20, 2012 13:48 Page 5

¡ - SegmentShape
- a
- b
- normal
- radius

¡ Spaces
¡ - Space

- addBody
- addConstraint
- addCollisionHandler
- addPostStepCallback
- addShape
- addStaticShape
- damping
- data
- elasticIterations
- gravity
- idleSpeedThreshold
- iterations
- rehashShape
- rehashStatic
- removeBody
- removeConstraint
- removeShape
- removeStaticShape
- resizeActiveHash
- resizeStaticHash
- setDamping
- setData
- setElasticIterations
- setGravity
- setIdleSpeedThreshold
- setIterations
- setSleepTimeThreshold
- sleepTimeThreshold
- step

¡ Constraints
¡ - Damped Rotary Spring

- Damped Spring
- Gear Joint
- Groove Joint
- Pin Joint
- Pivot Joint
- Ratchet Joint
- Rotary Limit Joint
- Simple Motor
- Slide Joints

¡ Arbiters and Collision Pairs
¡ - #

- a
- b
- bodies
- depth
- elasticity
- friction
- impulse
- isFirstContact
- normal
- point
- setElasticity
- setFriction
- shapes
- totalImpulse
- totalImpulseWithFriction

Document generated by Confluence on Feb 20, 2012 13:48 Page 6

¡ Shape Queries
¡ - pointQuery

- segmentQuery
¡ Space Queries
¡ - pointQuery

- pointQueryFirst
- segmentQuery
- segmentQueryFirst

¡ SegmentQueryInfo
¡ - hitDist

- hitPoint
• Platform Library
• ¡ apiLevel

¡ gc
¡ hw
¡ isColorDisplay
¡ isDeviceModeRendering
¡ registerErrorHandler
¡ window
¡ - height and width

- invalidate
- setFocus
- setPreferredSize - DO NOT DOCUMENT

¡ withGC
• Require Library
• String Library Extension
• ¡ split

¡ uchar
¡ usub

• Timer Library
• ¡ getMilliSecCounter

¡ start
¡ stop

• Tool Palette Library
• ¡ register

¡ enable
¡ enableCut
¡ enableCopy
¡ enablePaste

• Variable Library
• ¡ list

¡ makeNumericList
¡ monitor
¡ recall
¡ recallAt
¡ recallStr
¡ store
¡ storeAt
¡ unmonitor

• Background Image Library - DO NOT DOCUMENT
• ¡ API functions

¡ - enable
- height
- width
- x
- y
- setSize
- setPosition
- select
- hasImage
- isSelected

¡ Callbacks:
¡ - insertImage

- deleteImage

Document generated by Confluence on Feb 20, 2012 13:48 Page 7

- imageSizeChanged
• Config Panel Library - DO NOT DOCUMENT
• ¡ Config Panel management

¡ - createConfigPanel
- - Parameters

- Returns
- showConfigPanel
- - Parameters

- Returns
- destroy
- - Parameters

- Returns
¡ CheckBox
¡ - addCheckBox

- - Parameters
- Returns

- isChecked
- - Parameters

- Returns
¡ CollapsiblePane
¡ - newCollapsiblePane

- - Parameters
- Returns

- getContentPane
- - Parameters

- Returns
- setExpandedStatus
- - Parameters

- Returns
¡ ComboBox
¡ - addComboBox

- - Parameters
- Returns

- getSelectedIndex
- - Parameters

- Returns
- setSelectedIndex
- - Parameters

- Returns
¡ Label
¡ - addLabel

- - Parameters
- Returns

¡ Multiple Response Box
¡ - addMultipleResponseBox

- - Parameters
- Returns

- changeSelectionMode
- - Parameters

- Returns
- setSelectedItem
- - Parameters

- Returns
- changeItem
- - Parameters

- Returns
- addItem
- - Parameters

- Returns
- deleteItem
- - Parameters

- Returns
- isItemSelected
- - Parameters

Document generated by Confluence on Feb 20, 2012 13:48 Page 8

- Returns
¡ SpinBox
¡ - addSpinBox

- - Parameters
- Returns

- getValue
- - Parameters

- Returns
- setValue
- - Parameters

- Returns
¡ TextEntry
¡ - addTextEntry

- - Parameters
- Returns

- getExpression
- - Parameters

- Returns
- setExpression
- - Parameters

- Returns
• Question and Answer - DO NOT DOCUMENT
• ¡ - isWidgetInQuestion

- sendQuestionResponse
- isStudentMode
- getQuestionType

¡ Callbacks
¡ - showCorrectAnswers

- isCorrectAnswerProvided
- isQuestionAnswered
- getQuestionStatus
- clearStudentResponse

Standard Libraries

The Nspire implementation of Lua implements most standard libraries that come with the Lua
distribution. See the Lua Reference Manual (http://www.lua.org/manual/5.1/manual.html#5) for
definitions of the standard functions

Built-in Functions

• assert
• collectgarbage
• error
• gcinfo
• getfenv
• getmetatable
• ipairs
• load
• loadstring
• next
• pairs
• pcall
• rawequal
• rawget
• rawset
• select
• setfenv
• setmetatable

http://www.lua.org/manual/5.1/manual.html#5

Document generated by Confluence on Feb 20, 2012 13:48 Page 9

• tonumber
• tostring
• type
• unpack
• xpcall

Coroutine

• create
• resume
• running
• status
• wrap
• yield

Math

• abs
• acos
• asin
• atan
• atan2
• ceil
• cos
• cosh
• deg
• exp
• floor
• fmod
• frexp
• huge
• ldexp
• log
• log10
• max
• min
• modf
• pi
• pow
• rad
• random
• randomseed
• sin
• sinh
• sqrt
• tan
• tanh

String

• byte
• char
• dump
• find
• format
• gfind
• gmatch
• gsub
• len

Document generated by Confluence on Feb 20, 2012 13:48 Page 10

• lower
• match
• rep
• reverse
• sub
• upper

String routines lower and upper are not tailored to the current locale. The conversion of strings to upper
and lower case letters operate only on the 26 letters of the Latin alphabet. This restriction also applies
to the alphabetic matching patterns (%a, %l, %u, and %w) employed by the find, gmatch, and match
functions.

Table

• concat
• foreach
• foreachi
• getn
• insert
• maxn
• remove
• setn
• sort

Unimplemented

The following standard Lua libraries are not implemented in Nspire:

• file
• io
• os
• package.

The following standard functions are not implemented in Nspire:

• dofile
• loadfile

2D Editor

The Lua 2D Editor bindings enable the creation and manipulation of 2D Rich Text Editors within Npsire. 2D
Rich Text Editors are created using newRichText().

Rich text editors embed formatting information in the text string to indicate the presence
of a MathBox or ChemBox. getExpression, getExpressionSelection, and getText will the
formatting information if a MathBox or ChemBox has been inserted into the editor.

"\0el {...}" - Denotes a MathBox. Evaluated MathBox expressions result in a pair of "\0el
{...}" separated by a filled in '>'. See the Guidebook for a list of valid math expressions for
the MathBox.

"\0chem {...}" - Denotes a ChemBox.

Document generated by Confluence on Feb 20, 2012 13:48 Page 11

Rich text editors embed other formatting information in the text string. This
information may change in future releases, so using it is not recommended.
It is delimited by "\1 ...\".

newRichText

D2Editor.newRichText()

Creates and returns a new 2D rich text editor.

NOTE

The program must resize the 2D editor before the text editor widget is painted the first
time.

Default 2D Editor Setup

A new 2D rich text editor is created with the following defaults:
:move(0, 0)
:setBorder(0)
:setBorderColor(0x000000)
:setColorable(false)
:setDisable2DinRT(false)
:setFontSize(<default system size>)
:setMainFont(<default system font>)
:setReadOnly(false)
:setSelectable(true)
:setTextColor(0x000000)
:setVisible(true)

Introduced in platform.apiLevel = '1.0'

applyFunction - DO NOT DOCUMENT

Warning

The function D2Editor:applyFunction(text, use2DOperator) is not available to the customer.

D2Editor:applyFunction(text, use2DOperator)

Insert a function at the cursor position, or apply a function to the selection. Set use2DOperator true if the
2D operator for this function is to be used (default).

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'.

canPaste - DO NOT DOCUMENT

Warning

Document generated by Confluence on Feb 20, 2012 13:48 Page 12

The function D2Editor:canPaste() is not available to the customer.

D2Editor:canPaste()

Returns true if it is possible to use 'paste' in the editor, false otherwise.

Introduced in platform.apiLevel = '2.0'

createChemBox

D2Editor:createChemBox()

Inserts a Chem Box in the current cursor position of the editor.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

createMathBox

D2Editor:createMathBox()

Inserts a Math Box in the current cursor position of the editor.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

event - DO NOT DOCUMENT

Warning

The function D2Editor:event(event) is not available to the customer.

D2Editor:event(event)

Sends an event to the editor. This event must be one of the following:

event id

cut 0

copy 1

paste 2

Returns the text editor object.

Document generated by Confluence on Feb 20, 2012 13:48 Page 13

Introduced in platform.apiLevel = '2.0'

getExpression

D2Editor:getExpression()

Returns the contents of the text editor as a UTF-8 encoded string.

Introduced in platform.apiLevel = '2.0' as a synonym for getText.

getExpressionSelection

D2Editor:getExpressionSelection()

Returns three values: the contents of the text editor as a UTF-8 encoded string, the cursor position as an
integer, and the selection start as an integer.

Usage

Cursor and selection positions are the borders between characters, not the position of the
characters. The following code snippets will serve as examples.

str = 'This is a test string to see if this code works properly.'
d2e, error = D2Editor.newRichText()
result, error = d2e:setText(str, 16, 28)
str, pos, sel, error = d2e:getExpressionSelection()

The above code results in:
str = 'This is a test string to see if this code works properly.'
pos = 16 (right before the 's' in "string")
sel = 28 (between the two e's in "see")

str = 'This is a test string to see if this code works properly.'
d2e, error = D2Editor.newRichText()
result, error = d2e:setText(str, 28, 16)
str, pos, sel, error = d2e:getExpressionSelection()

The above code results in:
str = 'This is a test string to see if this code works properly.'
pos = 28 (between the two e's in "see")
sel = 16 (right before the 's' in "string")

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 14

getText

D2Editor:getText()

Returns the contents of the text editor as a UTF-8 encoded string.

Introduced in platform.apiLevel = '1.0'. This is a synonym for getExpression.

hasFocus

D2Editor:hasFocus()

Returns true if the editor has focus, false otherwise.

Introduced in platform.apiLevel = '2.0'

hasSelection - DO NOT DOCUMENT

Warning

The function D2Editor:hasSelection() is not available to the customer.

D2Editor:hasSelection()

Returns true if the editor has a selection, false otherwise.

Introduced in platform.apiLevel = '2.0'

isVisible

D2Editor:isVisible()

Returns true if the editor is visible, false otherwise.

Introduced in platform.apiLevel = '2.0'

move

D2Editor:move(x, y)

Sets the parent-relative location of the upper left corner of the text editor. Both x and y must be between
-32767 and 32767.

Returns the text editor object.

Document generated by Confluence on Feb 20, 2012 13:48 Page 15

Introduced in platform.apiLevel = '1.0'

pasteExpression - DO NOT DOCUMENT

Warning

The function D2Editor:pasteExpression(text) is not available to the customer.

D2Editor:pasteExpression(text)

Pastes an expression in the editor, at the cursor location or replacing the selection. Place the cursor past
the pasted expression. The expression is laid out after the paste.

Note: This function doesn't use or modify the clipboard.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'.

registerFilter

D2Editor:registerFilter(handlerTable)

This routine registers a table of handler functions which can filter events before they are sent to the 2D
editor widget.

Returns the text editor object.

The handlerTable is a table of event handler functions. Any event described in the section on Event
Handling can be filtered by a function in the handler table.

In the example code below, if the user presses the tab key in text editor ed, then the tabKey filter
function moves the focus to text editor ed2. Events charIn and arrowKey simply report which key was
pressed, then allow the event to pass on through to the text editor.

-- Create an editor
ed = D2Editor.newRichText()

-- Register filters for events
ed:registerFilter {
 tabKey = function()
 ed2:setFocus()
 return true
 end,
 charIn = function(ch)
 print(ch)
 return false
 end,
 arrowKey = function(key)
 print(key)
 return false
 end,
}

Document generated by Confluence on Feb 20, 2012 13:48 Page 16

Introduced in platform.apiLevel = '2.0'

resize

D2Editor:resize(width, height)

Changes the width and height of the text editor. Both width and height must be > 0 and < 32768.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

setAutoResize – DO NOT DOCUMENT

Warning

Function removed! Please use setTextSizeListener intead.

setBorder

D2Editor:setBorder(thickness)

Sets the editor's border thickness. Thickness value must be between 0 and 10.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

setBorderColor

D2Editor:setBorderColor(color)

Sets the editor's border color. Color value must be between 0 and 16777215 (0x000000 and 0xFFFFFF).

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

setColorable

D2Editor:setColorable(true or false)

Makes the expression colorable or uncolorable.

Returns the text editor object.

Document generated by Confluence on Feb 20, 2012 13:48 Page 17

Introduced in platform.apiLevel = '2.0'

setDisable2DinRT

D2Editor:setDisable2DinRT(true or false)

Turns off 2D layout of math input to the text box.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

setExpression

D2Editor:setExpression(text[, cursor[, selection[, full-precision]]])

Sets the text content of the text editor. The cursor position is set to 1 (beginning of text), -1 (end of text)
or a value from 1 to the length of the text plus 1. Text can be selected by specifying a selection index
indicating the end of the selection. No text is selected if selection = -1. An error is returned if cursor <
-1 or selection < -1. Both the cursor and the selection start default to -1 if unspecified. If true, the final
optional parameter, full-precision, indicates that all digits of calculated results should be displayed. If
false, full-precision indicates that calculated results should be rounded using the precision setting of the
editor.

Note

All backslashes sent to the editor must be doubled. This is in addition to the standard
escape rule for special characters. As a result, the string required to get the editor to show
home\stuff\work is "home\\\\stuff\\\\work".

Usage

Cursor and selection positions are the borders between characters, not the position of the
characters. The following code snippet highlights the characters "string to se" and places
the cursor before the 's' in "string".

str = 'This is a test string to see if this code works properly.'
d2e, error = D2Editor.newRichText()
result, error = d2e:setText(str, 16, 28)

The following code snippet highlights the characters "string to se" and places the cursor
before the second 'e' in "see".

str = 'This is a test string to see if this code works properly.'
d2e, error = D2Editor.newRichText()
result, error = d2e:setText(str, 28, 16)

Returns the text editor object.

Document generated by Confluence on Feb 20, 2012 13:48 Page 18

Introduced in platform.apiLevel = '2.0' as a synonym for setText().

setFocus

D2Editor:setFocus(true or false)

Sets the user input focus on the editor if true (the default). This is usually called from the on.getFocus
event handler.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

setFontSize

D2Editor:setFontSize(size)

Sets the font size of the text in the editor. The point size of the font is restricted on the TI-Nspire CX
and older hand-held devices. Choose one of the sizes 7, 9, 10, 11, 12, or 24. Any font size supported by
Windows or Mac OSX can be used on the desktop software.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

setFormattedExpression - DO NOT DOCUMENT

Warning

The function D2Editor:setFormattedExpression() is not available to the customer.

D2Editor:setFormattedExpression(text[, full-precision])

Sets the formatted text of the text editor. If true, the optional parameter, full-precision, indicates that
all digits of calculated results should be displayed. If false, full-precision indicates that calculated results
should be rounded using the precision setting of the editor.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0' as a synonym for setFormattedText

setFormattedText - DO NOT DOCUMENT

Warning

The function D2Editor:setFormattedText() is not available to the customer.

Document generated by Confluence on Feb 20, 2012 13:48 Page 19

D2Editor:setFormattedText(text[, full-precision])

Sets the formatted text of the text editor. If true, the optional parameter, full-precision, indicates that
all digits of calculated results should be displayed. If false, full-precision indicates that calculated results
should be rounded using the precision setting of the editor.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

setMainFont

D2Editor:setMainFont(family, style)

Sets the main font family ("serif" or "sansserif") and style ("r", "b", "i", "bi").

Style Description

r Regular

b Bold

i Italic

bi Bold and Italic

Returns the text editor object.

This function only effects previously set text. Subsequent calls to setText, setExpression, or
setFormattedExpression will use the default font.

Introduced in platform.apiLevel = '2.0'

setReadOnly

D2Editor:setReadOnly(true or false)

Makes the content of the text editor modifiable (false) or unmodifiable (true) by the user. Defaults to true
if a boolean value is not specified.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 20

setSelectable

D2Editor:setSelectable(true or false)

Makes the content of the text editor selectable (true) or unselectable (false) by the user. Defaults to true
if a boolean value is not specified.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

setSizeChangeListener

D2Editor:setSizeChangeListener(function(editor, w, h))

Sets the callback function for when the editor contents exceed the current editor size, contents can fit
on fewer lines, or contents fit on a single line of smaller width. This function can then resize the editor
appropriately. The call back function should be a void function. It will be passed the following parameters:

Parameter Description

editor Editor in which the expression changed size.

w Optimal widget width to fit the expression.

h Optimal widget height to fit the expression.

Returns the text editor object.

To remove the listener, call D2Editor:setSizeChangeListener(nil)

Introduced in platform.apiLevel = '2.0'.

setSubScript - DO NOT DOCUMENT

Warning

The function D2Editor:setSubScript() is not available to the customer.

D2Editor:setSubScript()

Applies sub script format to the selected text or to the current cursor position of the editor.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 21

setSuperScript - DO NOT DOCUMENT

Warning

The function D2Editor:setSuperScript() is not available to the customer.

D2Editor:setSuperScript()

Applies super script format to the selected text or to the current cursor position of the editor.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

setText

D2Editor:setText(text[, cursor[, selection[, full-precision]]])

See setExpression() for details.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'. This is a synonym for setExpression().

setTextChangeListener

D2Editor:setTextChangeListener(function(editor))

Sets the callback function for when the text expression changes. This function will be passed the editor
object. This allows for processing text input as it occurs.

Returns the text editor object.

To remove the listener, call D2Editor:setSTextChangeListener(nil)

Introduced in platform.apiLevel = '2.0'.

setTextColor

D2Editor:setTextColor(color)

Sets the editor's text color. Color value must be between 0 and 16777215 (0x000000 and 0xFFFFFF).

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 22

setVisible

D2Editor:setVisible(true or false)

Sets the visibility of the text editor.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

setWordWrapWidth

D2Editor:setWordWrapWidth(width)

Set the Rich Text Editor word-wrapping width in pixels. Ignored if the editor is in 2D mode. Set to 0 to
indicate widget width. Set to <0 to disable wrapping. Width must be -32767 to 32767.

NOTE

When word wrapping is disabled, i.e. width < 0, and ellipses are added to cut words, the
negative value of width specifies the margin from the right of the widget before ellipses are
used.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

Class Library

The class library implements basic object-oriented class definitions.

class

class([parent_class])

Returns a new class. If a parent class is specified, the new class inherits the methods of the parent class.

Widget = class()
function Widget:init() ... end

Button = class(Widget)
function Button:init() ... end

With these definitions, when the script calls Button(), a new Button is created, the Button:init() function
is called to initialize the button, and the newly minted Button object is returned as the function result of
the call.

Document generated by Confluence on Feb 20, 2012 13:48 Page 23

Class Button in this example inherits all the methods and class variables defined in class Widget. Class
Button can override any methods of its parent class.

Introduced in platform.apiLevel = '1.0'

Clipboard Library

addText

clipboard.addText(string)

This routine adds the contents of string to the clipboard as plain text, MIME type "text/plain".

Introduced in platform.apiLevel = '1.0'

getText

clipboard.getText()

This routine returns the contents of the clipboard as a string of plain text. If the clipboard does not
contain any text (MIME type "text/plain") then this routine returns nil.

Introduced in platform.apiLevel = '1.0'

Cursor Library

This cursor library controls the appearance of the mouse pointer.

set

cursor.set(cursorname)

Parameter cursorname is a string which contains the name of the cursor shape to use for the mouse
pointer. It can be one of the following strings:

"default",
"interrogation",
"crosshair",
"text",
"pointer",
"link select",
"diag resize",
"wait busy",

Document generated by Confluence on Feb 20, 2012 13:48 Page 24

"hollow pointer",
"rotation",
"pencil",
"zoom box",
"hide",
"arrow",
"zoom out",
"dotted arrow",
"clear",
"animate",
"excel plus",
"mod label",
"writing",
"unavailable",
"resize row",
"resize column",
"drag grab",
"hand open",
"hand closed",
"hand pointer",
"zoom in",
"dilation",
"translation",
"show"

Introduced in platform.apiLevel = '1.0'

hide

cursor.hide()

This routine hides the mouse pointer.

Introduced in platform.apiLevel = '1.0'

show

cursor.show()

This routine makes the mouse pointer visible.

Introduced in platform.apiLevel = '1.0'

Document Library

markChanged

document.markChanged()

Document generated by Confluence on Feb 20, 2012 13:48 Page 25

This routine marks the current document as changed. The user will be prompted to save the Nspire
document before closing.

Introduced in platform.apiLevel = '1.0'

Event Handling

Script applications respond to external stimuli by implementing event handlers. All the event handlers are
grouped in the "on" module.

Example

For example, the application script implements on.paint(gc) to be notified when it is time
to redraw its window. on.paint is passed a graphics context which it can use to call drawing
routines on its window.

function on.paint(gc)
 gc:drawLine(...)
 :
end

Set Script Event Sequence

The following sequence of events are generated when 'Set Script' is selected.

API Level 1.0 API Level 2.0 notes

 on.construction() on.construction() is new in
2.0

on.restore on.restore Only if opening a document
and something was saved
by on.save()

on.resize on.resize

... ... Other calls depending on
other active cards or scripts

on.activate on.activate When the script is active on
the active card

... ... Other calls depending on
other applications or scripts

on.getFocus on.getFocus When the script receives
user input focus

... ... Other calls depending on
other applications or scripts

on.create() on.create() was obsoleted
in 2.0

Document generated by Confluence on Feb 20, 2012 13:48 Page 26

on.paint() on.paint()

activate

on.activate()

This routine is called when the script application is activated. The dimensions of the drawing window may
not be initialized at this point so it is not a good place to create and position graphical elements if they
depend on the window size.

Introduced in platform.apiLevel = '1.0'

arrowDown

on.arrowDown()

This routine is called when the user presses the down arrow key.

Introduced in platform.apiLevel = '1.0'

arrowKey

on.arrowKey(key)

This routine is called when the user presses an arrow key. The key parameter may be "up", "down",
"left", or "right". This routine will not be called if the script implements a specific arrow key handler
(on.arrowDown for instance) for the particular arrow key type.

Introduced in platform.apiLevel = '1.0'

arrowLeft

on.arrowLeft()

This routine is called when the user presses the left arrow key.

Introduced in platform.apiLevel = '1.0'

arrowRight

on.arrowRight()

Document generated by Confluence on Feb 20, 2012 13:48 Page 27

This routine is called when the user presses the right arrow key.

Introduced in platform.apiLevel = '1.0'

arrowUp

on.arrowUp()

This routine is called when the user presses the up arrow key.

Introduced in platform.apiLevel = '1.0'

charIn

on.charIn(char)

This routine is called when the user types a letter, digit, or other characters. Parameter char is normally
a one-byte string but since it can contain a UTF-8 encoded character, it may be two or more bytes long.
It might also contain the letters of a function name from one of the short-cut keys; "sin" from the trig
menu, for instance.

Introduced in platform.apiLevel = '1.0'

backspaceKey

on.backspaceKey()

This routine is called when the user presses the backspace key on the desktop keyboard or the del key on
the hand-held device keypad.

Introduced in platform.apiLevel = '1.0'

backtabKey

on.backtabKey()

This routine is called when the user presses shift+tab.

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 28

clearKey

on.clearKey()

This routine is called when the user presses the clear key on the hand-held keypad.

Introduced in platform.apiLevel = '1.0'

construction

on.construction()

This function is guaranteed to fire first before any other event.

Introduced in platform.apiLevel = '2.0'

contextMenu

on.contextMenu()

This routine is called when the user presses the context menu key.

Introduced in platform.apiLevel = '1.0'

copy

on.copy()

This routine is called when the user selects the copy command either from a menu or by pressing ctrl+C.

Introduced in platform.apiLevel = '1.0'

create

on.create()

For scripts with platform.apiLevel >= '2.0' use on.construction() instead.

This routine is called called after resize and before paint when the script application is created. The
window size and graphics context are valid at this point. The on.paint event handler will be called soon
after this routine finishes.

It is best to think of this functions as an initialization method that fires once automatically.

Document generated by Confluence on Feb 20, 2012 13:48 Page 29

Introduced in platform.apiLevel = '1.0'
Removed in platform.apiLevel = '2.0'

createMathBox

on.createMathBox()

This routine is called when the the user presses Ctrl+M or inserts a mathbox, the implementation for this
callback should call the corresponding 2d editor to insert a math box if applicable.

Introduced in platform.apiLevel = '2.0'

cut

on.cut()

This routine is called when the user selects the cut command either from a menu or by pressing ctrl+X.

Introduced in platform.apiLevel = '1.0'

deactivate

on.deactivate()

This routine is called when the script is deactivated. This happens when the user moves the focus to
another page or to another application on the same page.

Introduced in platform.apiLevel = '1.0'

deleteKey

on.deleteKey()

This routine is called when the user presses the delete key on the desktop keyboard. This is not the del
key on the hand-held keypad.

Introduced in platform.apiLevel = '1.0'

destroy

on.destroy()

Document generated by Confluence on Feb 20, 2012 13:48 Page 30

This routine is called just before the script application is deleted. A script app is deleted when it is cut to
the clipboard and when the document that contains it is closed.

Introduced in platform.apiLevel = '1.0'

enterKey

on.enterKey()

This routine is called when the user presses the enter key.

Introduced in platform.apiLevel = '1.0'

escapeKey

on.escapeKey()

This routine is called when the user presses the esc key.

Introduced in platform.apiLevel = '1.0'

getFocus

on.getFocus()

This routine is called when the script receives user input focus.

Introduced in platform.apiLevel = '2.0'

getSymbolList

on.getSymbolList()

This routine is called when the script app symbol list is being serialized to the clipboard. The script app
returns a list of names of variables in the symbol table it needs to copy with it to the clipboard. The
Nspire system copies the names and values of the variables along with the script app. Then when the
user pastes the script app in another problem, the system adds the companion variables to the problem
symbol table.

on.getSymbolList() is called when a page containing a script app is copied, but not when a
problem containing a script app is copied. This is because the whole symbol table is copied
when the problem is copied.

For example, the following function indicates that it needs variable f1 to be copied with the app to the
clipboard. The value of f1 will be added to the symbol table when it is pasted into another problem even
in another TNS document.

Document generated by Confluence on Feb 20, 2012 13:48 Page 31

function on.getSymbolList()
 return {"f1"}
end

Introduced in platform.apiLevel = '2.0'

grabDown

on.grabDown(x, y)

This routine is called in the following situations:

• When the user presses and holds the select key on a device - x & y are both 0
• When the user presses ctrl-select on a device - x & y are both 0
• When the user presses the middle mouse button over an active card on the desktop - x & y are the

pixel coordinates of the mouse pointer.

The grabDown and grabUp events prevent the generation of a mouseUp event in all cases. They will be
preceeded by a mouseDown event when generated by pressing and holding the select key on a device.

Introduced in platform.apiLevel = '1.0'

grabUp

on.grabUp(x, y)

This routine is called when the mouse button is released while grab is in effect.

Introduced in platform.apiLevel = '1.0'

help

on.help()

This routine is called when the user presses the help key. On the desktop the help key is ctrl+shift+?. On
the hand-held device it is ctrl+?, the control key over the trig button.

Introduced in platform.apiLevel = '1.0'

loseFocus

on.loseFocus()

This routine is called when the script loses user input focus.

Document generated by Confluence on Feb 20, 2012 13:48 Page 32

Introduced in platform.apiLevel = '2.0'

mouseDown

on.mouseDown(x, y)

This routine is called when the user clicks the mouse. x and y are in window-relative pixel coordinates.

This event will NOT be generated if the right mouse button is being held down.

Introduced in platform.apiLevel = '1.0'

mouseMove

on.mouseMove(x, y)

This routine is called when the user moves the mouse pointer. The mouse button does not have to be
pressed to receive these events.

Introduced in platform.apiLevel = '1.0'

mouseUp

on.mouseUp(x, y)

This routine is called when the user releases the mouse button.

This event will NOT be generated in the following cases:

• The preceeding mouseDown event was blocked because the right mouse button was
already down

• The preceeding mouseDown event was not handled

Introduced in platform.apiLevel = '1.0'

paint

on.paint(gc)

This routine is called when the script application's window needs to be painted. The gc graphics context is
used in the script code to draw on the window.

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 33

paste

on.paste()

This routine is called when the user selects the paste command either from a menu or by pressing ctrl+V.

Introduced in platform.apiLevel = '1.0'

resize

on.resize(width, height)

This routine is called when the script application's window changes size. This is a good place to initialize
(or reinitialize) graphical objects based on the window size.

Introduced in platform.apiLevel = '1.0'

restore

on.restore(state)

This routine is called when the script application is restored from its saved state in a document or when
the app is pasted into a document. It is only called if state was saved with the application when it was
previously copied to the clipboard or saved in a document. See the on.save handler.

Parameter state is the table that the on.save event handler returned.

Functionality that is not available during initialization is also not usable within
on.restore. Among the functions that cannot be called are math.eval and
platform.isDeviceModeRendering.

Introduced in platform.apiLevel = '1.0'

returnKey

on.returnKey()

This routine is called when the user presses the carriage return key on the hand-held keypad.

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 34

rightMouseDown

on.rightMouseDown(x, y)

This routine is called when the user clicks the right mouse button. x and y are in window-relative pixel
coordinates.

Notes

Only available on the desktop version.

Mouse events are exclusive, meaning a rightMouseDown event cannot occur while the left
mouse button is being held down and vice-versa.

Introduced in platform.apiLevel = '1.0'

rightMouseUp

on.rightMouseUp(x, y)

This routine is called when the user releases the right mouse button.

Notes

Only available on the desktop version.

This event will NOT be generated in the following cases:

• The preceeding rightMouseDown event was blocked because the left mouse button
was already down

• The preceeding rightMouseDown event was not handled

Introduced in platform.apiLevel = '1.0'

save

on.save()

This routine is called when the script app is saved to the document or copied to the clipboard. The script
should return a table of whatever data it needs to properly restore when the on.restore event handler is
called.

Introduced in platform.apiLevel = '1.0'

tabKey

on.tabKey()

Document generated by Confluence on Feb 20, 2012 13:48 Page 35

This routine is called when the user presses the tab key.

Introduced in platform.apiLevel = '1.0'

timer

on.timer()

If the script application implements on.timer, then the system will call this routine each time the timer
ticks.

Introduced in platform.apiLevel = '1.0'

varChange

on.varChange(varlist)

This routine is called when a monitored variable is changed by another application. The varlist is a list of
variable names whose values were changed. This handler must return a value to indicate if it accepts the
new value(s) or vetoes the change.

Valid return values are:

0 Success. The script application accepts the
change.

-1 Veto range. The new value is unsatisfactory
because it is outside the acceptable range, i.e. too
low or too high.

-2 Veto type. The new value is unsatisfactory
because its type cannot be used by the script
application.

-3 Veto existence. Another application deleted the
variable and this application needs it.

Introduced in platform.apiLevel = '1.0'

Graphics Library

A graphics context is a module which has a handle to the script's graphics output window and a library
of graphics routines which are used to draw on the window. A graphics context is supplied to the script
"on.paint" event handler each time the window needs to be redrawn.

The graphics context employs a pixel-based coordinate system with the origin in the upper left corner of
the drawing window.

Document generated by Confluence on Feb 20, 2012 13:48 Page 36

clipRect

gc:clipRect(op[, x, [y, [width, [height]]]])

Sets the clipping rectangle for subsequent graphics operations.

Parameter op takes one of the strings "set", "reset", "intersect", or "null".

reset sets the clipping rectangle to include the entire
window. The remaining parameters are ignored
and can be left out.

set sets the clipping rectangle to the x, y coordinates
with the specified width and height. Unspecified
parameters default to the system window location
and size.

intersect Removed in platform.apilevel = '2.0'.

null sets the clipping rectangle to empty. All
subsequent graphics commands will be ignored.

Typically the "set" operation is called before drawing, say, a text string. It is important to call the "reset"
operation after drawing the last clipped graphic so that you don't leave a lingering clipping rectangle as a
side effect.

Introduced in platform.apiLevel = '1.0'

drawArc

gc:drawArc(x, y, width, height, startAngle, arcAngle)

Draws an arc in the rectangle with upper left corner (x,y) and pixel width and height. Both width and
height must be >= 0. The arc is drawn beginning at startAngle degrees and continues for endAngle
degrees. Zero degrees points to the right and 90 degrees points up (standard mathematical practice but
worth mentioning since the y axis is inverted).

To draw a circle, the width and height must be equal length and the start and end angles must be 0 and
360. If width and height are different lengths, this routine will draw an oval.

Introduced in platform.apiLevel = '1.0'

drawImage

gc:drawImage(image, x, y)

Draws an image at (x, y). The image must have been created by a previous call to image.new(...).

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 37

drawLine

gc:drawLine(x1, y1, x2, y2)

Draws a line from (x1,y1) to (x2,y2).

Introduced in platform.apiLevel = '1.0'

drawPolyLine

gc:drawPolyLine({x1, y1, x2, y2, ..., xn, yn})

Draws a series of lines connecting the (x, y) points. The polygon is not automatically closed; the first x-y
coordinate pair must be repeated at the end of the array of points to draw a closed polygon.

Introduced in platform.apiLevel = '1.0'

drawRect

gc:drawRect(x, y, width, height)

Draws a rectangle at (x, y) with the given pixel width and height. Both width and height must be >= 0.

Introduced in platform.apiLevel = '1.0'

drawString

gc:drawString("text", x, y [,vertalignment])

Draws text on the window beginning at pixel location (x,y). Vertical alignment may be "baseline",
"bottom", "middle", or "top". This aligns the text in the height of the characters' bounding rectangle.
Vertical alignment defaults to "none" if unspecified.

Returns the x pixel position after the text.

Introduced in platform.apiLevel = '1.0'

fillArc

gc:fillArc(x, y, width, height, startAngle, endAngle)

Fills an arc with the preset color. Both width and height must be >= 0. See setColorRGB to set the fill
color.

Document generated by Confluence on Feb 20, 2012 13:48 Page 38

Introduced in platform.apiLevel = '1.0'

fillPolygon

gc:fillPolygon({x1, y1, x2, y2, ... xn, yn})

Fills a polygon with the preset color. The array of points bounds the polygon. See setColorRGB to set the
fill color.

Introduced in platform.apiLevel = '1.0'

fillRect

gc:fillRect(x, y, width, height)

Fills a rectangle with the preset color. Both width and height must be >= 0. See setColorRGB to set the
fill color.

Introduced in platform.apiLevel = '1.0'

getStringHeight

gc:getStringHeight("text")

Returns the pixel height of the text. The pixel height is determined by the font setting previously set by a
call to setFont.

Introduced in platform.apiLevel = '1.0'

getStringWidth

gc:getStringWidth("text")

Returns the pixel width of text. The pixel width is calculated using the font setting previously set by a call
to setFont.

Introduced in platform.apiLevel = '1.0'

setColorRGB

gc:setColorRGB(red, green, blue)

Document generated by Confluence on Feb 20, 2012 13:48 Page 39

gc:setColorRGB(0xRRGGBB) - platform.level = '2.0' only

Sets the color for subsequent draw and fill routines. The red, green, and blue components of the color are
values in the range 0 to 255. Black is 0,0,0 and white is 255,255,255. Alternately, a single value can be
passed in. The components of this single value are blue + 255 * (green + 255 * red).

Introduced in platform.apiLevel = '1.0'.
Extended in platform.apiLevel = '2.0'.

setFont

gc:setFont(family, style, size)

Sets the font for drawing text and measuring text size. Family may be "sansserif" or "serif". Style may be
"r" for regular, "b" for bold, "i" for italic, or "bi" for bold italic.

The point size of the font is restricted on the TI-Nspire CX and older hand-held devices. Choose one of
the sizes 7, 9, 10, 11, 12, or 24. Any font size supported by Windows or Mac OSX can be used on the
desktop software.

Returns the font family, style, and size previously in effect.

Introduced in platform.apiLevel = '1.0'

setPen

gc:setPen([thickness[, style]])

Sets the pen for drawing lines and borders. Thickness may be "thin", "medium", or "thick". It defaults
to "thin" if not specified. Style may be "smooth", "dotted", or "dashed". It defaults to "smooth" if not
specified.

Introduced in platform.apiLevel = '1.0'

Image Library

An "image" object is a container for graphical images, typically small GUI objects such as buttons, arrow
heads, and other such graphical adornments.

new

img = image.new(str)

This function returns a new image object from a string input. The string consists of the image header
followed by the binary representation of the image pixels.

Document generated by Confluence on Feb 20, 2012 13:48 Page 40

The header consists of 20 bytes of data arranged as presented in the following table. All fields are little
endian integers.

Offset Width (bytes) Contents

0 4 Pixel width of image

4 4 Pixel height of image

8 1 Image alignment (0)

9 1 Flags (0)

10 2 Pad (0)

12 4 The number of bytes between
successive raster lines

16 2 The number of bits per pixel
(16)

18 2 Planes per bit (1)

The image pixel data immediately follows the header. Pixels are arranged in rows. Each pixel is a little
endian 16-bit integer with five bits for each color red, green, and blue. The top bit determines if the pixel
is drawn. If it is zero (0), the pixel is not drawn. If it is one (1), the pixel is drawn in the RGB color of the
remaining 15 bits.

0x8000 is black, 0x801F is blue, 0x83E0 is green, 0xFC00 is red, and 0xFFFF is white.

Due to image rotation space constraints, images are limited to height + width <= 640.

Introduced in platform.apiLevel = '1.0'

copy

cimage = image:copy(width, height)

Returns a copy of the input image scaled to fit the specified pixel width and height.

The width and height default to the size of the input image.

This routine raises an error if the specified width or height are <= 0 or if width + height >
640.

Introduced in platform.apiLevel = '1.0'

height

h = image:height()

Returns the pixel height of the image.

Document generated by Confluence on Feb 20, 2012 13:48 Page 41

Introduced in platform.apiLevel = '1.0'

rotate

rimage = image:rotate(angle)

Returns a copy of the input image rotated counterclockwise by angle degrees.

Introduced in platform.apiLevel = '2.0'

width

w = image:width()

Returns the pixel width of the image.

Introduced in platform.apiLevel = '1.0'

Locale Library

name

locale.name()

Returns the name of the current locale. The locale name is a two-letter language code. The language
code may be followed by an underscore and two-letter country code.

Introduced in platform.apiLevel = '1.0'

Math Library Extension

In addition to the functions that come with the standard Lua math library there is an interface to the
Nspire math server. The interface allows access to the advanced mathematical features of the Nspire
product.

Notes

The nNspire math server utilizes a number of unicode characters. For example, the math
server uses Unicode character U+F02F, i, UTF-8 character "\239\128\175", for imaginary
numbers, and another special character for the exponent for scientific notation, small
capital letter "E. (See http://en.wikipedia.org/wiki/UTF-8 for a description of how to
convert unicode to UTF-8 and vice-versa. See reference documentation for a list of unicode
characters used in Nspire.

http://en.wikipedia.org/wiki/UTF-8

Document generated by Confluence on Feb 20, 2012 13:48 Page 42

All results from the Nspire math server are returned as full precision expressions.
If the user wishes to limit the display digits then it is their responsibility to call
math.getEvalSettings() and apply the appropriate precision prior to displaying the value
returned by the Nspire math server.

eval

math.eval(math_expression)
math.eval(math_expression [,exact]) -- platform.apiLevel = '1.0' only

This function sends an expression or command to the Nspire math server for evaluation. The input
expression must be a string that the Nspire math server can interpret and evaluate.

The second parameter, exact, (platform.apiLevel = '1.0 only) is only meaningful with the Computer
Algebra System. If true, it instructs the math server to calculate and return exact numerical results
when it can. The default value of exact is false in which case the math server attempts to calculate an
approximate result.

Beginning with platform.apiLevel = '2.0', the evaluation is performed using the current document
settings, except all evaluations are performed at full precision in approximate mode. The current
document settings can be overriden by math.setEvalSettings.

If the math server successfully evaluates the expression, it returns the results as a fundamental Lua
data type. If the math server cannot evaluate the expression because of a syntax, simplification, or
semantic error, eval returns two results: nil and an error number meaningful to the math server. (The
error numbers are documented in the TI-Nspre (TM) Reference Guide - Error Codes and Messages for
math.eval.) If the math server calculates a symbolic result, it cannot be represented as a fundamental
Lua type, so eval returns nil and the string "incompatible data type".

Example

To evaluate f1 for a given value in x, the parameter x must be converted to a string then
any embedded "e" must be replaced with Unicode character U+F000.

local mx = tostring(x):gsub("e", string.uchar(0xF000))
local expr = "f1(" .. mx .. ")"
return math.eval(expr)

Since math.eval always does calculations in approximate mode, things like boolean logic
and some conversions will throw an error:

– Boolean logic
r,e = math.eval('1 and 2') — returns "Argument must be a boolean expression or integer"
error

– convert to base 10
r,e = math.eval("0@>Base10") — returns "Domain Error"

math.evalStr works fine in such cases.

math.eval is not available during script initialization.

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 43

Revised to remove the optional argument exact and use current document settings, approximate mode,
and full precision in platform.apilevel = '2.0'

evalStr

math.evalStr(math_expression)

This function sends an expression or command to the Nspire math server for evaluation. The input
expression must be a string that the Nspire math server can interpret and evaluate. The evaluation is
performed using the current document settings. The current document settings can be overriden by
math.setEvalSettings. NOTE: All evaluations are performed at full precision regardless of the document
settings or overrides.

If the math server successfully evaluates the expression, it returns the results as a string. The evalStr
function returns no result if the math server does not return a calculated result. If the math server cannot
evaluate the expression because of a syntax, simplification, or semantic error, evalStr returns two results:
nil and an error number meaningful to the math server.

Examples

The evaluation of "10^19" in exact mode will return "1. 19". A closer look at the result
string will indicate that it contains "\049\046\239\128\128\49\57". "\239\128\128" is
Unicode character U+F000 which is small capital letter "E".
.

result, error = math.evalStr('10^19')
t, u, v, w, x, y, z = string.byte(result, 1, 7)
print (result, #result, t, u, v, w, x, y, z)

->1.?19 7 49 46 239 128 128 49 57

The evaluation of "2-3" will return "-1". The result string will be encoded as
"\226\136\146\49". "\226\136\146" is Unicode character U+2212 which is a minus sign.

result, error = math.evalStr('2-3')
v, w, x, y, z = string.byte(result, 1, 5)
print (result, #result, v, w, x, y, z)

->?1. 5 226 136 146 49 46

Introduced in platform.apiLevel = '2.0'

getEvalSettings

math.getEvalSettings()

Returns a table of tables with the document settings that are currently being used by math.eval. These
settings are equivalent to the current document settings unless a call has been made to setEvalSettings.

Document generated by Confluence on Feb 20, 2012 13:48 Page 44

Example

This example serves to demonstrate the structure of the table returned by getEvalSettings.

{
 {'Display Digits', 'Fixed12'},
 {'Angle Mode', 'Gradian'},
 {'Calculation Mode', 'Approximate'},
 {'Real or Complex Format', 'Polar'},
 {'Exponential Format', 'Engineering'},
 {'Vector Format', 'Cylindrical'},
 {'Base', 'Binary'},
 {'Unit System', 'Eng/US'}, }
}

Introduced in platform.apiLevel = '2.0'

setEvalSettings

math.setEvalSettings(settingStructure)

This function is used to override one or more of the current document settings for all subsequent math
evaluations performed by math.eval and math.evalStr. It does not change the document context settings.
The setting structure is a table of tables. Each inner table consists of the name of the document setting to
override and the name of the value to use instead.

Example

Sample call to math.setEvalSettings()

settings = {
 {'Unit System', 'Eng/US'},
 {'Calculation Mode', 'Approximate'},
 {'Real or Complex Format', 'Polar'},
 {'Exponential Format', 'Engineering'}
}

math.setEvalSettings(settings)

For user convenience, setEvalSettings also accepts the ordinal number of the setting to override and the
ordinal number of the value to use instead. The ordinal numbers to use correspond to the order of the
settings and their values found at File->Settings->Document Settings.

Example

Sample call to math.setEvalSettings() using a table with ordinal numbers

settingsTable = {
 {2, 3},

Document generated by Confluence on Feb 20, 2012 13:48 Page 45

 {4, 3},
 {6, 3},
 {8, 2}
}

math.setEvalSettings(settingsTable)

In fact, setEvalSettings accepts any combination of names and ordinal numbers. So the following is also
valid.

Example

Sample call to math.setEvalSettings() using a table with combined names and numbers

settings = {
 {3, 'Exact'},
 {'Angle Mode', 2},
 {'Real or Complex Format', 'Polar'},
 {8, 2}
}

math.setEvalSettings(settings)

math.setEvalSettings may be called at any point in the script app. The modified document settings are
utilized by math.eval for all subsequent calls within the script app (unless modified by a subsequent call
to setEvalSettings).

Note

All results from the Nspire math server are returned as full precision expressions.
If the user wishes to limit the display digits then it is their responsibility to call
math.getEvalSettings() and apply the appropriate precision prior to displaying the value
returned by the Nspire math server.

Introduced in platform.apiLevel = '2.0'

Physics Library

This is an interface library to Chipmunk Physics version 5.3.4. See http://
files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for details about
this version from the creators of Chipmunk Physics.

NOTE

This library is not included unless the statement "require ('physics')" is found at
the top of the Lua script. See require for more details.

Miscellaneous routines

http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/
http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/
http://openlib.eps.ti.com/display/SEInfo/Nspire+Scripting+API+Require

Document generated by Confluence on Feb 20, 2012 13:48 Page 46

INFINITY

infinity = physics.misc.INFINITY()

Parameter Type Description

infinity out number Infinity

Returns a number representing infinity in the physics engine.

Introduced in platform.apiLevel = '2.0'

momentForBox

inertia = physics.misc.momentForBox(mass, width, height)

Parameter Type Description

mass in number The mass of the box

width in number The width of the box

height in number The height of the box

inertia out number The inertia of the box

This routine computes the moment of inertia for a solid box. This is a useful helper routine for computing
the moment of inertia as an input to the physics.Body(...) constructor.

Introduced in platform.apiLevel = '2.0'

momentForCircle

inertia = physics.misc.momentForCircle(mass, innerRadius, outerRadius, offBody)

Parameter Type Description

mass in number The mass of the circle

innerRadius in number The inner radius of the circle

outerRadius in number The outer radius of the circle

offset in physics.Vect The offset of the circle from the
center of gravity

inertia out number The inertia of the circle

Document generated by Confluence on Feb 20, 2012 13:48 Page 47

This routine computes the moment of inertia for a circle. A solid circle has an inner radius of 0. This
is a useful helper routine for computing the moment of inertia as an input to the physics.Body(...)
constructor.

Introduced in platform.apiLevel = '2.0'

momentForPoly

inertia = physics.misc.momentForPoly(mass, vertices, offset)

Parameter Type Description

mass in number The mass of the polygon

vertices in {physics.Vect} A list of vertices defining the
shape of the polygon

offset in physics.Vect The offset of the polygon from
the center of gravity

inertia out number The inertia of the polygon

This routine computes the moment of inertia for a polygon. This is a useful helper routine for computing
the moment of inertia as an input to the physics.Body(...) constructor.

Introduced in platform.apiLevel = '2.0'

momentForSegment

inertia = physics.misc.momentForSegment(mass, endPointA, endPointB)

Parameter Type Description

mass in number The mass of the segment

endPointA in physics.Vect The point defining one end of
the segment

endPointB in physics.Vect The point defining the other end
of the segment

inertia out number The inertia of the segment

This routine computes the moment of inertia for a segment. The end points can be in either world or
local coordinates. This is a useful helper routine for computing the moment of inertia as an input to the
physics.Body(...) constructor.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 48

Vectors

A vector is a 2-dimensional object with x and y components. Its type is TI.cpVect.

Vect

vector = physics.Vect(x, y)
vector = physics.Vect(angle)
vector = physics.Vect(vect)

Parameter Type Description

x in number The x component of the vector

y in number The y component of the vector

angle in number An angle in radians

vect in physics.Vect A vector

vector out physics.Vect A vector

Creates a vector with initial x and y component values. The second form creates a unit vector pointing in
direction angle. The third form creates a copy of the input vector.

Introduced in platform.apiLevel = '2.0'

add

sum = physics.Vect:add(vec)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect A vector to add to self

sum out physics.Vect The vector sum of self and vec

Returns the vector sum of self and vec.

The Vect class also implements the addition operator (+). Therefore vectors v1 and v2 can be added with
the expression v1 + v2.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 49

clamp

clamped = physics.Vect:clamp(len)

Parameter Type Description

self in physics.Vect The input vector

len in number The maximum length of the
vector

clamped out physics.Vect A new vector with a length no
longer than len

Returns a copy of self clamped to length len.

Introduced in platform.apiLevel = '2.0'

cross

crossprod = physics.Vect:cross(vec)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The vector to cross with self

zmag out number The z magnitude of the cross
product of self and vec

Returns the z magnitude of the cross product of self and vec.

Introduced in platform.apiLevel = '2.0'

dist

dist = physics.Vect:dist(vec)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The vector to which to find the
distance from self

dist out number The distance from self to vec

Document generated by Confluence on Feb 20, 2012 13:48 Page 50

Returns the distance between self and vec.

Introduced in platform.apiLevel = '2.0'

distsq

distsq = physics.Vect:distsq(vec)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The vector to which to find the
distance squared from self

distsq out number The distance squared from self
to vec

Returns the distance squared between self and vec. This routine is faster than physics.Vect:dist when
you only need to compare distances.

Introduced in platform.apiLevel = '2.0'

dot

dotprod = physics.Vect:dot(vec)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The other vector

dotprod out number The scalar dot product of self
and vec

Returns the scalar dot product of self and vec.

Introduced in platform.apiLevel = '2.0'

eql

isequ = physics.Vect:eql(vec)

Parameter Type Description

self in physics.Vect The input vector

Document generated by Confluence on Feb 20, 2012 13:48 Page 51

vec in physics.Vect The vector against which to
compare with self

isequ out boolean True if the components of self
equal the components of vec

Returns true if the x and y components of self equal those of vec. Take the usual precautions when
comparing floating point numbers for equality.

The Vect class also implements the equal comparison operator (==). Therefore vectors v1 and v2 can be
compared with the expression v1 == v2.

Introduced in platform.apiLevel = '2.0'

length

len = physics.Vect:length()

Parameter Type Description

self in physics.Vect The input vector

len out number The length of vector self

Returns the magnitude of self.

Introduced in platform.apiLevel = '2.0'

lengthsq

lensq = physics.Vect:lengthsq()

Parameter Type Description

self in physics.Vect The input vector

lensq out number The length squared of vector self

Returns the length squared of self. This routine is faster than Vect:length() when you only need to
compare lengths.

Introduced in platform.apiLevel = '2.0'

lerp

v = physics.Vect:lerp(vec, f)

Document generated by Confluence on Feb 20, 2012 13:48 Page 52

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The other vector

f in number f is a fractional number from 0
to 1 representing the proportion
of distance between self and vec

v out physics.Vect A vector interpolated between
self and vec

Returns the linear interpolation between self and vec as a vector. f is the fraction of distance between self
and vec.

May not behave as expected for f larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

lerpconst

v = physics.Vect:lerpconst(vec, d)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The other vector

d in number The distance from self to vec to
interpolate a new vector

v out physics.Vect

Returns a vector interpolated from self towards vec with length d.

May not behave as expected for d larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

mult

v = physics.Vect:mult(factor)

Parameter Type Description

self in physics.Vect The input vector

Document generated by Confluence on Feb 20, 2012 13:48 Page 53

factor in number The value to multiply by self

v out physics.Vect The resulting scaled vector

Multiplies a vector by a factor.

Introduced in platform.apiLevel = '2.0'

near

isnear = physics.Vect:near(vec, distance)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The value to multiply by self

distance in number The distance from vec

isnear out boolean True if self is within distance of
vec

Determines if self is near another vector.

Introduced in platform.apiLevel = '2.0'

neg

v = physics.Vect:neg()

Parameter Type Description

self in physics.Vect The input vector

v out physics.Vect The resulting negated vector

Returns the negative of self.

The Vect class also implements the unary minus operator (-self).

Introduced in platform.apiLevel = '2.0'

normalize

normvec = physics.Vect:normalize()

Document generated by Confluence on Feb 20, 2012 13:48 Page 54

Parameter Type Description

self in physics.Vect The input vector

normvec out physics.Vect The resulting normalized vector

Returns a normalized copy of self. The length of a normal vector is 1.

Introduced in platform.apiLevel = '2.0'

normalizeSafe

normvec = physics.Vect:normalizeSafe()

Parameter Type Description

self in physics.Vect The input vector

normvec out physics.Vect The resulting normalized vector

Returns a normalized copy of self. Protects against division by zero.

Introduced in platform.apiLevel = '2.0'

perp

perpvec = physics.Vect:perp()

Parameter Type Description

self in physics.Vect The input vector

perpvec out physics.Vect The resulting perpendicular
vector

Returns a vector perpendicular to self. (90 degree rotation)

Introduced in platform.apiLevel = '2.0'

project

pvec = physics.Vect:project(vec)

Parameter Type Description

self in physics.Vect The input vector

Document generated by Confluence on Feb 20, 2012 13:48 Page 55

vec in physics.Vect The other vector

pvec out physics.Vect The vector of self projected onto
vec

Computes the projection of self onto another vector.

Introduced in platform.apiLevel = '2.0'

rotate

rvec = physics.Vect:rotate(vec)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The other vector

rvec out physics.Vect The resulting rotated vector

Uses complex multiplication to rotate self by vec. Scaling will occur if self is not a unit vector.

Introduced in platform.apiLevel = '2.0'

rperp

perpvec = physics.Vect:rperp()

Parameter Type Description

self in physics.Vect The input vector

perpvec out physics.Vect The resulting perpendicular
vector

Returns a vector perpendicular to self. (90 degree rotation)

Introduced in platform.apiLevel = '2.0'

setx

self = physics.Vect:setx(x)

Parameter Type Description

self in physics.Vect The vector to modify

Document generated by Confluence on Feb 20, 2012 13:48 Page 56

x in number The new value of the x
component of the vector

self out physics.Vect The input vector is returned as
the output

Changes the value of the x component of self. Returns self.

Introduced in platform.apiLevel = '2.0'

sety

self = physics.Vect:sety(y)

Parameter Type Description

self in physics.Vect The vector to modify

y in number The new value of the y
component of the vector

self out physics.Vect The input vector is returned as
the output

Changes the value of the y component of self. Returns self.

Introduced in platform.apiLevel = '2.0'

slerp

v = physics.Vect:slerp(vec, f)

Parameter Type Description

self in physics.Vect A unit vector

vec in physics.Vect The other unit vector

f in number f is a fractional number from 0
to 1 representing the proportion
of distance between self and vec

v out physics.Vect A vector interpolated between
self and vec

Computes a spherical linear interpolation between unit vectors self and vec.

See http://en.wikipedia.org/wiki/Slerp for a discussion of the meaning, value, and usage of
spherical linear interpolation.

http://en.wikipedia.org/wiki/Slerp

Document generated by Confluence on Feb 20, 2012 13:48 Page 57

 local vect1 = physics.Vect(math.pi/3) -- unit vector with angle pi/3 radians
 local vect2 = physics.Vect(math.pi/2) -- unit vector with angle pi/2 radians
 local result = vect1:slerp(vect2, 0.55) -- compute spherical linear interpolation

Notes

This routine computes meaningful results only when the two inputs are unit vectors.

May not behave as expected for f larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

slerpconst

v = physics.Vect:slerpconst(vec, angle)

Parameter Type Description

self in physics.Vect A unit vector

vec in physics.Vect The other unit vector

angle in number The maximum angle between
self and vec to interpolate a new
vector

v out physics.Vect

Returns the spherical linear interpolation from self towards vec but by no more than angle in radians.

See http://en.wikipedia.org/wiki/Slerp for a discussion of the meaning, value, and usage of
spherical linear interpolation.

NOTE

This routine computes meaningful results only when the two inputs are unit vectors.

Introduced in platform.apiLevel = '2.0'

sub

diff = physics.Vect:sub(vec)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect A vector to subtract from self

http://en.wikipedia.org/wiki/Slerp

Document generated by Confluence on Feb 20, 2012 13:48 Page 58

diff out physics.Vect The vector difference between
self and vec

Returns the vector difference of self and vec.

The Vect class also implements the subtraction operator (-). Therefore vector v2 can be subtracted from
v1 with the expression v1 - v2.

Introduced in platform.apiLevel = '2.0'

toangle

angle = physics.Vect:toangle()

Parameter Type Description

self in physics.Vect The input vector

angle out number The angle of self

Returns the angle in radians of self.

Introduced in platform.apiLevel = '2.0'

unrotate

uvec = physics.Vect:unrotate(vec)

Parameter Type Description

self in physics.Vect The input vector

vec in physics.Vect The other vector

uvec out physics.Vect The resulting unrotated vector

Inverse of physics.Vect:rotate(vec) .

Introduced in platform.apiLevel = '2.0'

x

x = physics.Vect:x()

Parameter Type Description

self in physics.Vect The input vector

Document generated by Confluence on Feb 20, 2012 13:48 Page 59

x out number The value of the x component of
the vector

Returns the value of the x component of the input vector.

Introduced in platform.apiLevel = '2.0'

y

y = physics.Vect:y()

Parameter Type Description

self in physics.Vect The input vector

y out number The value of the y component of
the vector

Returns the value of the y component of the input vector.

Introduced in platform.apiLevel = '2.0'

Bounding Boxes

A bounding box is a structure the contains the left, bottom, right, and top edges of a box. Its type is
TI.cpBB.

BB

bb = physics.BB(l, b, r, t)

Parameter Type Description

l in number left

b in number bottom

r in number right

t in number top

bb out physics.BB A bounding box with boundaries
left, bottom, right, and top

Returns a new bounding box with the given initial edges.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 60

b

bottom = physics.BB:b()

Parameter Type Description

self in physics.BB The input bounding box

bottom out number The bottom edge of the
bounding box

Returns the bottom edge of the bounding box.

Introduced in platform.apiLevel = '2.0'

clampVect

cvec = physics.BB:clampVect(vec)

Parameter Type Description

self in physics.BB The input bounding box

vec in physics.Vect A vector

cvec out physics.Vect A vector clamped to the
bounding box

Returns a copy of vec clamped to the bounding box.

Introduced in platform.apiLevel = '2.0'

containsBB

bool = physics.BB:containsBB(other)

Parameter Type Description

self in physics.BB The input bounding box

other in physics.BB The other bounding box

bool out boolean True if self completely contains
the other bounding box

Determines if a bouding box contains another bounding box.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 61

containsVect

bool = physics.BB:containsVect(vec)

Parameter Type Description

self in physics.BB The input bounding box

vec in physics.Vect A vector

bool out boolean True if self contains vector vec

Determines if a bounding box contains a vector.

Introduced in platform.apiLevel = '2.0'

expand

bb = phyics.BB:expand(vec)

Parameter Type Description

self in physics.BB The input bounding box

vec in physics.Vect A vector

bb out physics.BB The bounding box self expanded
to include vector vec

Returns the bounding box that contains both self and vec.

Introduced in platform.apiLevel = '2.0'

intersects

bool = physics.BB:intersects(other)

Parameter Type Description

self in physics.BB The input bounding box

other in physics.BB The other bounding box

bool out boolean True if self intersects the other
bounding box

Determines if two bounding boxes intersect.

Document generated by Confluence on Feb 20, 2012 13:48 Page 62

Introduced in platform.apiLevel = '2.0'

l

left = physics.BB:l()

Parameter Type Description

self in physics.BB The input bounding box

left out number The left edge of the bounding
box

Returns the left edge of the bounding box.

Introduced in platform.apiLevel = '2.0'

merge

bb = physics.BB:merge(other)

Parameter Type Description

self in physics.BB The input bounding box

other in physics.BB The other bounding box

bb out physics.BB The bounding box that contains
both self and the other bounding
box

Returns the bounding box that contains both self and the other bounding box.

Introduced in platform.apiLevel = '2.0'

setb

self = physics.BB:setb(bottom)

Parameter Type Description

self in physics.BB The input bounding box

bottom in number The new value for the bottom
edge of the bounding box

Document generated by Confluence on Feb 20, 2012 13:48 Page 63

self out physics.BB The input bounding box is
returned as the output

Sets the bottom edge of the bounding box to a new value. Returns self.

Introduced in platform.apiLevel = '2.0'

r

right = physics.BB:r()

Parameter Type Description

self in physics.BB The input bounding box

right out number The right edge of the bounding
box

Returns the right edge of the bounding box.

Introduced in platform.apiLevel = '2.0'

setl

self = physics.BB:setl(left)

Parameter Type Description

self in physics.BB The input bounding box

left in number The new value for the left edge
of the bounding box

self out physics.BB The input bounding box is
returned as the output

Sets the left edge of the bounding box to a new value. Returns self.

Introduced in platform.apiLevel = '2.0'

setr

self = physics.BB:setr(right)

Parameter Type Description

self in physics.BB The input bounding box

Document generated by Confluence on Feb 20, 2012 13:48 Page 64

right in number The new value for the right edge
of the bounding box

self out physics.BB The input bounding box is
returned as the output

Sets the right edge of the bounding box to a new value. Returns self.

Introduced in platform.apiLevel = '2.0'

sett

self = physics.BB:sett(top)

Parameter Type Description

self in physics.BB The input bounding box

top in number The new value for the top edge
of the bounding box

self out physics.BB The input bounding box is
returned as the output

Sets the top edge of the bounding box to a new value. Returns self.

Introduced in platform.apiLevel = '2.0'

t

top = physics.BB:t()

Parameter Type Description

self in physics.BB The input bounding box

top out number The top edge of the bounding
box

Returns the top edge of the bounding box.

Introduced in platform.apiLevel = '2.0'

wrapVect

wvec = physics.BB:wrapVect(vec)

Document generated by Confluence on Feb 20, 2012 13:48 Page 65

Parameter Type Description

self in physics.BB The input bounding box

vec in physics.Vect A vector

wvec out physics.Vect A vector wrapped to the
bounding box

Returns a copy of vec wrapped to the bounding box.

Introduced in platform.apiLevel = '2.0'

Bodies

A body holds the physical properties (mass, position, rotation, velocity, etc.) of an object. It does not
have a shape until you attach one (or more) to it. Its type is TI.cpBody.

Body

body = physics.Body(mass, inertia)

Parameter Type Description

mass in number Mass of the body

inertia in number The inertia of the body

body out physics.Body A new Body with the supplied
mass and inertia

Returns a new Body with the given mass and moment of inertia.

Use the provided helper functions to compute the moment of inertia.

Introduced in platform.apiLevel = '2.0'

activate

self = physics.Body:activate()

Parameter Type Description

self in physics.Body The input Body

self out physics.Body The input Body is returned as
the output

Document generated by Confluence on Feb 20, 2012 13:48 Page 66

Activates a sleeping body.

See http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for
an explanation of this routine.

Introduced in platform.apiLevel = '2.0'

angle

angle = physics.Body:angle()

Parameter Type Description

self in physics.Body The input Body

angle out number The angle of the Body in radians

Returns the angle in radians of the orientation of the body.

Introduced in platform.apiLevel = '2.0'

angVel

avel = physics.Body:angVel()

Parameter Type Description

self in physics.Body The input Body

avel out number The angular velocity of the Body
in radians per unit time

Returns the angular velocity of the body in radians per unit time.

Introduced in platform.apiLevel = '2.0'

applyForce

self = physics.Body:applyForce(forceVect, rOffset)

Parameter Type Description

self in physics.Body The input Body

forceVect in physics.Vect A force vector

http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Document generated by Confluence on Feb 20, 2012 13:48 Page 67

rOffset in physics.Vect Vector offset of the force relative
to the Body

self out physics.Body The input Body is returned as
the output

Apply force vector on self at a relative offset from the center of gravity.

Introducted in platform.apiLevel = '2.0'

applyImpulse

self = physics.Body:applyImpulse(impulseVect, rOffset)

Parameter Type Description

self in physics.Body The input Body

impulseVect in physics.Vect Impulse force on the Body

rOffset in physics.Vect Vector offset of the force relative
to the Body

self out physics.Body The input Body is returned as
the output

Apply the impulse vector to self at a relative offset from the center of gravity.

Introducted in platform.apiLevel = '2.0'

data

obj = physics.Body:data()

Parameter Type Description

self in physics.Body The input Body

obj out Lua object An object previously set on the
Body by the programmer

Returns the contents of the programmer data field of the Body.

Introducted in platform.apiLevel = '2.0'

force

fvec = physics.Body:force()

Document generated by Confluence on Feb 20, 2012 13:48 Page 68

Parameter Type Description

self in physics.Body The input Body

fvec out physics.Vect The force vector on the Body

Returns the force vector on the body.

Introduced in platform.apiLevel = '2.0'

isRogue

bool = physics.Body:isRogue()

Parameter Type Description

self in physics.Body The input Body

bool out boolean True if the Body is a rogue Body

Returns true if the Body is a rogue Body, never having been added to the simulation Space.

See http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for
an explanation of rogue bodies.

Introduced in platform.apiLevel = '2.0'

isSleeping

bool = physics.Body:isSleeping()

Parameter Type Description

self in physics.Body The input Body

bool out boolean True if the Body is sleeping

Returns true if the body is sleeping.

See http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for
an explanation of sleeping bodies.

Introduced in platform.apiLevel = '2.0'

http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/
http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Document generated by Confluence on Feb 20, 2012 13:48 Page 69

local2World

wvec = physics.Body:local2World(lvec)

Parameter Type Description

self in physics.Body The input Body

lvec in physics.Vect A vector relative to the position
of the Body

wvec out physics.Vect A vector in world coordinates

Converts lvec from body-relative coordinates to world coordinates. Returns the converted vector.

Introduced in platform.apiLevel = '2.0'

kineticEnergy

ke = physics.Body:kineticEnergy()

Parameter Type Description

self in physics.Body The input Body

ke out number The total kinetic energy of the
Body

Returns the kinetic energy of the body.

Introduced in platform.apiLevel = '2.0'

mass

m = physics.Body:mass()

Parameter Type Description

self in physics.Body The input Body

m out number The mass of the Body

Returns the mass of the body.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 70

moment

m = physics.Body:moment()

Parameter Type Description

self in physics.Body The input Body

m out number The moment of inertia of the
Body

Returns the moment of inertia of the body.

Introduced in platform.apiLevel = '2.0'

pos

p = physics.Body:pos()

Parameter Type Description

self in physics.Body The input Body

p out physics.Vect The position of the Body

Returns the vector position of the body.

Introduced in platform.apiLevel = '2.0'

resetForces

self = physics.Body:resetForces()

Parameter Type Description

self in physics.Body The input Body

self out physics.Body The input Body is returned as
the output

Zero both the force and torque accumulated on self.

Introducted in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 71

rot

rvec = physics.Body:rot()

Parameter Type Description

self in physics.Body The input Body

rvec out physics.Vect The unit vector orientation of
the Body

Returns the vector orientation of the body. This is a unit vector cached from the last calculated angle of
the Body.

Introduced in platform.apiLevel = '2.0'

setAngle

self = physics.Body:setAngle(angle)

Parameter Type Description

self in physics.Body The input Body

angle in number The angle of rotation in radians
of the Body

self out physics.Body The input Body is returned as
the output

Updates the angle of rotation in radians of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setAngVel

self = physics.Body:setAngVel(vel)

Parameter Type Description

self in physics.Body The input Body

vel in number The angular velocity in radians
per unit time of the Body

Document generated by Confluence on Feb 20, 2012 13:48 Page 72

self out physics.Body The input Body is returned as
the output

Updates the angular velocity of the body. The angular velocity is in radians per unit time.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setData

self = physics.Body:setData(value)

Parameter Type Description

self in physics.Body The input Body

value in object A programmer-supplied Lua
object

self out physics.Body The input Body is returned as
the output

Sets the programmer data field of the Body. The programmer can store any Lua object in this field. This is
a handy place to store a reference to a simulation object.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setForce

self = physics.Body:setForce(vector)

Parameter Type Description

self in physics.Body The input Body

vector in physics.Vect The vector of force on the Body

self out physics.Body The input Body is returned as
the output

Updates the force vector on the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 73

setMass

self = physics.Body:setMass(mass)

Parameter Type Description

self in physics.Body The input Body

mass in number The mass of the Body

self out physics.Body The input Body is returned as
the output

Updates the mass of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setMoment

self = physics.Body:setMoment(moment)

Parameter Type Description

self in physics.Body The input Body

moment in number The moment of inertia of the
Body

self out physics.Body The input Body is returned as
the output

Updates the moment of inertia of the body.

Use the provided helper functions to compute the moment of inertia.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setPos

self = physics.Body:setPos(vector)

Parameter Type Description

self in physics.Body The input Body

Document generated by Confluence on Feb 20, 2012 13:48 Page 74

vector in physics.Vect The position of the Body

self out physics.Body The input Body is returned as
the output

Updates the position of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setPositionFunc

self = physics.Body:setPositionFunc(func)

Parameter Type Description

self in physics.Body The input Body

func in function(body, dt) A callback function that updates
the position of the Body on each
time step

self out physics.Body The input Body is returned as
the output

Sets the position function of the body. The position function must be a function that accepts a Body and a
time step value and at some point calls body:updatePosition to update the position of the body.

Returns the Body.

Example

-- TODO This is a lame example

function samplePositionFunc(body, dt)
 -- What goes here?
 body:updatePosition(dt)
end

body:setPositionFunc(samplePositionFunc)

Introduced in platform.apiLevel = '2.0'

setTorque

self = physics.Body:setTorque(torque)

Document generated by Confluence on Feb 20, 2012 13:48 Page 75

Parameter Type Description

self in physics.Body The input Body

torque in number The torque of the Body

self out physics.Body The input Body is returned as
the output

Updates the torque on the body. Torque is a numeric magnitude.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setVel

self = physics.Body:setVel(vector)

Parameter Type Description

self in physics.Body The input Body

vector in physics.Vect The velocity vector of the Body

self out physics.Body The input Body is returned as
the output

Updates the velocity of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setVelocityFunc

self = physics.Body:setVelocityFunc(func)

Parameter Type Description

self in physics.Body The input Body

func in function(body, grav, damping,
dt)

A callback function that updates
the velocity of the Body on each
time step

self out physics.Body The input Body is returned as
the output

Sets the velocity function of the body. The velocity function must be a function that accepts a
Body, a gravity vector, a numeric damping factor, and a time step value. The function should call
body:updateVelocity to adjust the velocity of the body.

Document generated by Confluence on Feb 20, 2012 13:48 Page 76

Returns the Body.

Example

function sampleVelocityFunc(body, gravity, damping, dt)
 local pos = body:pos()
 local sqdist = pos:lengthsq()
 local g = pos:mult(-GravityStrength / (sqdist * math.sqrt(sqdist)))
 body:updateVelocity(g, damping, dt)
end

body:setVelocityFunc(sampleVelocityFunc)

Introduced in platform.apiLevel = '2.0'

setVLimit

self = physics.Body:setVLimit(limit)

Parameter Type Description

self in physics.Body The input Body

limit in number The maximum speed of the
Body

self out physics.Body The input Body is returned as
the output

Sets the limit for the maximum speed of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

setWLimit

self = physics.Body:setWLimit(limit)

Parameter Type Description

self in physics.Body The input Body

limit in number The maximum angular velocity
of the Body

self out physics.Body The input Body is returned as
the output

Document generated by Confluence on Feb 20, 2012 13:48 Page 77

Updates the limit of the angular velocity of the body. Angular velocity is in radians per unit time.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

sleep

self = physics.Body:sleep()

Parameter Type Description

self in physics.Body The input Body

self out physics.Body The input Body is returned as
the output

Puts the body to sleep.

See http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for
an explanation of sleeping bodies.

NOTES

The body must be added to a Space before it can be put to sleep.

Calling this function within a query or callback is not allowed.

Introduced in platform.apiLevel = '2.0'

sleepWithGroup

self = physics.Body:sleepWithGroup([group])

Parameter Type Description

self in physics.Body The input Body

group in physics.Body A sleeping body. If this
parameter is not supplied, a new
group is created

self out physics.Body The input Body is returned as
the output

Puts the Body to sleep and adds it to a group of other sleeping bodies.

See http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for
an explanation of this routine.

NOTE

http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/
http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Document generated by Confluence on Feb 20, 2012 13:48 Page 78

The body must be added to a Space before it can be put to sleep.

Calling this function within a query or callback is not allowed.

This routine will raise an exception if group is not sleeping.

Introduced in platform.apiLevel = '2.0'

torque

t = physics.Body:torque()

Parameter Type Description

self in physics.Body The input Body

torque out number The torque on the Body

Returns the torque on the body.

Introduced in platform.apiLevel = '2.0'

updatePosition

physics.Body:updatePosition(dt)

Parameter Type Description

self in physics.Body The input Body

dt in number The time interval in seconds

Updates the position of the body using Euler integration.

See http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for
an explanation of this routine.

Introduced in platform.apiLevel = '2.0'

updateVelocity

physics.Body:updateVelocity(grav, damp, dt)

Parameter Type Description

self in physics.Body The input Body

http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Document generated by Confluence on Feb 20, 2012 13:48 Page 79

grav in physics.Vect The force of gravity

damp in physics.Vect The damping factor

dt in physics.Vect The time interval in seconds

Updates the velocity of the body using Euler integration.

See http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for
an explanation of this routine.

Introduced in platform.apiLevel = '2.0'

vel

vvel = physics.Body:vel()

Parameter Type Description

self in physics.Body The input Body

vvel out physics.Vect The velocity of the Body

Returns the vector velocity of the body.

Introduced in platform.apiLevel = '2.0'

vLimit

vmax = physics.Body:vLimit()

Parameter Type Description

self in physics.Body The input Body

vmax out number The maximum speed of the
Body

Returns the speed limit of the body.

Introduced in platform.apiLevel = '2.0'

wLimit

wmax = physics.Body:wLimit()

http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Document generated by Confluence on Feb 20, 2012 13:48 Page 80

Parameter Type Description

self in physics.Body The input Body

wmax out number The maximum angular velocity
of the Body in radians per unit
time

Returns the angular velocity limit of the body. The angular velocity is in radians per unit time.

Introduced in platform.apiLevel = '2.0'

world2Local

lvec = physics.Body:world2Local(wvec)

Parameter Type Description

self in physics.Body The input Body

wvec in physics.Vect A vector in world coordinates

lvec out physics.Vect A vector relative to the position
of the Body

Converts wvec from world coordinates to body-relative coordinates. Returns the converted vector.

Introduced in platform.apiLevel = '2.0'

Shapes

Shapes contain the surface properties of an object such as how much friction or elasticity it has. All
collision shapes implement the following accessor routines.

BB

bb = physics.Shape:BB()

Parameter Type Description

self in physics.Shape The input Shape

bb in physics.BB Bounding box of the Shape

Returns the bounding box of the shape.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 81

body

body = physics.Shape:body()

Parameter Type Description

self in physics.Shape The input Shape

body out physics.Body The Body associated with the
Shape

Returns the body attached to the shape. If the shape is static, then it will return nil.

Introduced in platform.apiLevel = '2.0'

collisionType

coll = physics.Shape:collisionType()

Parameter Type Description

self in physics.Shape The input Shape

coll out number The programmer-assigned
integer collision type

Returns the integer collision type of the Shape.

Introduced in platform.apiLevel = '2.0'

data

obj = physics.Shape:data()

Parameter Type Description

self in physics.Shape The input Shape

obj out Lua object The programmer-assigned data
object assigned to this Shape

Returns the contents of the programmer data field of the Shape.

Introducted in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 82

friction

f = physics.Shape:friction()

Parameter Type Description

self in physics.Shape The input Shape

f out number The coefficient of friction for this
Shape

Returns the friction coefficient of the shape.

Introduced in platform.apiLevel = '2.0'

group

g = physics.Shape:group()

Parameter Type Description

self in physics.Shape The input Shape

g out number The assigned group number

Returns the group number of the shape.

The group number is converted to a positive whole number when stored.

Introduced in platform.apiLevel = '2.0'

layers

layers = physics.Shape:layers()

Parameter Type Description

self in physics.Shape The input Shape

layers out number A bitmap of the layers this
shape occupies

Returns the bitmap of layers the shape occupies.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 83

rawBB

bb = physics.Shape:rawBB()

Parameter Type Description

self in physics.Shape The input Shape

bb out physics.BB The bounding box of the Shape

Returns the bounding box of the shape. Only valid after a call to physics.Shape:BB() or
physics.Space:step().

Introduced in platform.apiLevel = '2.0'

restitution

r = physics.Shape:restitution()

Parameter Type Description

self in physics.Shape The input Shape

r out number The restitution of the Shape

Returns the restitution (or elasticity) of the shape.

Introduced in platform.apiLevel = '2.0'

sensor

s = physics.Shape:sensor()

Parameter Type Description

self in physics.Shape The input Shape

s out boolean True if the Shape is a sensor

Returns true if the shape is a sensor.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 84

setCollisionType

self = physics.Shape:setCollisionType(collisionType)

Parameter Type Description

self in physics.Shape The input Shape

collisionType in number Programmer-defined type of
collision

self out physics.Shape The input Shape is returned as
the output

Assigns a collision type (an integer value of your choosing) to the shape. It is used to determine which
handler to call when a collision occurs. Returns self.

Introduced in platform.apiLevel = '2.0'

setData

self = physics.Shape:setData(obj)

Parameter Type Description

self in physics.Shape The input Shape

obj in Lua object An object defined by the
programmer

self out physics.Shape The input Shape is returned as
the output

Sets the programmer data field of the Shape. The programmer can store any Lua object in this field.
Returns self.

Introduced in platform.apiLevel = '2.0'

setFriction

self = physics.Shape:setFriction(f)

Parameter Type Description

self in physics.Shape The input Shape

f in number Coefficient of friction for the
surface of the Shape

Document generated by Confluence on Feb 20, 2012 13:48 Page 85

self out physics.Shape The input Shape is returned as
the output

Sets the friction coefficient for the shape. Returns self.

May not behave as expected for f larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

setGroup

self = physics.Shape:setGroup(group)

Parameter Type Description

self in physics.Shape The input Shape

group in number Group number

self out physics.Shape The input Shape is returned as
the output

Sets the group (a number defined by the programmer) of the shape. Shapes in the same group do not
generate collisions. Returns self.

The group number is converted to a positive whole number when stored.

Introduced in platform.apiLevel = '2.0'

setLayers

self = physics.Shape:setLayers(layers)

Parameter Type Description

self in physics.Shape The input Shape

layers in number A bitmap of integer layer
numbers. This implementation
permits 32 layers

self out physics.Shape The input Shape is returned as
the output

Sets the layers that the shape inhabits. Shapes only collide if they are in the same layer. layers is an
integer bitmap of all the layers that the shape occupies. Returns self.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 86

setRestitution

self = physics.Shape:setRestitution(r)

Parameter Type Description

self in physics.Shape The input Shape

r in number The new value for the shape's
restitution

self out physics.Shape The input Shape is returned as
the output

Sets the restitution (or elasticity) of the shape. A value of 0.0 gives no bounce and a value of 1.0 gives a
perfect bounce. Returns self.

May not behave as expected for r larger than 1.0 or less than 0.

setSensor

self = physics.Shape:setSensor(bool)

Parameter Type Description

self in physics.Shape The input Shape

bool in boolean True if the shape is a sensor

self out physics.Shape The input Shape is returned as
the output

Determines if the shape is a sensor (true) or not (false). Sensors call collision handlers but do not
generate collisions. Returns self.

Introduced in platform.apiLevel = '2.0'

setSurfaceV

self = physics.Shape:setSurfaceV(vel)

Parameter Type Description

self in physics.Shape The input Shape

vel in physics.Vect The new vector for the surface
velocity

Document generated by Confluence on Feb 20, 2012 13:48 Page 87

self out physics.Shape The input Shape is returned as
the output

Sets the surface velocity of the shape. Returns self.

Introduced in platform.apiLevel = '2.0'

surfaceV

sv = physics.Shape:surfaceV()

Parameter Type Description

self in physics.Shape The input Shape

sv out physics.Vect The surface velocity of the
Shape

Returns the surface velocity vector of the shape.

Introduced in platform.apiLevel = '2.0'

Circle Shapes

A CircleShape is a subclass of Shape. Its type is TI.cpCircleShape.

CircleShape

cs = physics.CircleShape(body, radius, offset)

Parameter Type Description

body in physics.Body A Body or nil

radius in number The radius of the circle

offset in physics.Vect The offset of the circle from the
Body

cs out physics.CircleShape A new CircleShape

Returns a new CircleShape with the given body, radius, and offset vector from the body's center of
gravity in body-local coordinates. Specify nil for the body to use the space's static body.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 88

offset

ovec = physics.CircleShape:offset()

Parameter Type Description

self in physics.CircleShape The input CircleShape

ovec out physics.Vect The offset of the shape from the
Body

Returns the offset vector of the shape from the body's center of gravity.

Introduced in platform.apiLevel = '2.0'

radius

r = physics.CircleShape:radius()

Parameter Type Description

self in physics.CircleShape The input CircleShape

r out number The radius of the shape

Returns the radius of the shape.

Introduced in platform.apiLevel = '2.0'

Polygon Shapes

Polygon shapes are bounded by a set of line segments. The enclosed area of the polygon must be convex
and the vertices must be defined in counterclockwise order. Poygon shapes are of type TI.cpPolyShape.

PolyShape

ps = physics.PolyShape(body, vertices, offset)

Parameter Type Description

body in physics.Body A Body or nil

vertices in {physics.Vect} The list of vertices that define
the boundaries of the polygon

Document generated by Confluence on Feb 20, 2012 13:48 Page 89

defined in counterclockwise
order

offset in physics.Vect The offset of the PolyShape from
the Body

ps out physics.PolyShape A new PolyShape

Returns a new PolyShape with the given body, table of vertices, and offset from the body's center of
gravity. Specify nil for the body to use the space's static body.

Introduced in platform.apiLevel = '2.0'

numVerts

nv = physics.PolyShape:numVerts()

Parameter Type Description

self in physics.PolyShape The input PolyShape

nv out number The number of vertices in the
PolyShape

Returns the number of vertices in the table of polygon vertices.

Introduced in platform.apiLevel = '2.0'

points

points = physics.PolyShape:points()

Parameter Type Description

self in physics.PolyShape The input PolyShape

points out {physics.Vect} A table of vertices that define
the boundary of the polygon.
The vertices are translated to
the polygon's current world
coordinates

Returns a copy of the table of vertices defining the bounds of the polygon. The vertices are translated to
the polygon's current world coordinates.

When a PolyShape has not been added to a Space, it has no world coordinates. In this
case, each vertex returned by physics.PolyShape:points() will have x and y equal to 0.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 90

vert

v = physics.PolyShape:vert(n)

Parameter Type Description

self in physics.PolyShape The input PolyShape

v out physics.Vect The nth vertex of the polygon.
The coordinates of the vector
are relative to the shape's Body

Returns vertex number n of the table of vertices defining the bounds of the polygon. If the shape is
static then the vertex values are in world coordinates, otherwise the vertex coordiates are relative to the
shape's body. Returns nil if n is less than 1 or greater than the number of vertices in the polygon.

Introduced in platform.apiLevel = '2.0'

Segment Shapes

A segment shape is defined by two end points and a radius. Its type is TI.cpSegmentShape.

SegmentShape

ss = physics.SegmentShape(body, a, b, radius)

Parameter Type Description

body in physics.Body A Body or nil

a in physics.Vect The first end point of the
segment. The end point is in
coordinates relative to the Body

b in physics.Vect The second end point of the
segment relative to the Body

radius in number The distance of the border of the
segment from the line between
the end points of the segment

ss out physics.SegmentShape A new SegmentShape

Returns a new SegmentShape with end point vectors a and b. radius defines the thickness of the
segment.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 91

a

avec = physics.SegmentShape:a()

Parameter Type Description

self in physics.SegmentShape The input SegmentShape

avec out physics.Vect The first end point of the
segment

Returns the a vector defining one of the end points of the segment.

Introduced in platform.apiLevel = '2.0'

b

bvec = physics.SegmentShape:b()

Parameter Type Description

self in physics.SegmentShape The input SegmentShape

bvec out physics.Vect The second end point of the
segment

Returns the b vector defining one of the end points of the segment.

Introduced in platform.apiLevel = '2.0'

normal

nvec = physics.SegmentShape:normal()

Parameter Type Description

self in physics.SegmentShape The input SegmentShape

nvec out physics.Vect The unit normal vector of the
segment

Returns the computed unit normal vector to the segment.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 92

radius

r = physics.SegmentShape:radius()

Parameter Type Description

self in physics.SegmentShape The input SegmentShape

r out number The radius of the segment

Returns the radius of the segment.

Introduced in platform.apiLevel = '2.0'

Spaces

A physics Space is the basic unit of simulation.

Space

s = physics.Space()

Parameter Type Description

s out physics.Space A new simulation Space

Returns a new physics simulation Space.

Introduced in platform.apiLevel = '2.0'

addBody

self = physics.Space:addBody(body)

Parameter Type Description

self in physics.Space The input simulation Space

body in physics.Body Adds the Body to the simulation
Space

self out physics.Space The input Space is returned as
the output

Adds a Body to the Space. Returns self.

Document generated by Confluence on Feb 20, 2012 13:48 Page 93

Introduced in platform.apiLevel = '2.0'

addConstraint

self = physics.Space:addConstraint(constraint)

Parameter Type Description

self in physics.Space The input simulation Space

constraint in physics.Constraint Adds a Constraint to the
simulation Space

self out physics.Space The input Space is returned as
the output

Adds a Constraint to the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

addCollisionHandler

self = physics.Space:addCollisionHandler(collisionTypeA, collisionTypeB, callbacksTable)

Parameter Type Description

self in physics.Space The input simulation Space

collisionTypeA in number Type of first collision

collisionTypeB in number Type of second collision

callbacksTable in table of functions A table of functions to call
during collision detection and
handling

self out physics.Space The input Space is returned as
the output

Registers a table of callback functions to handle collisions between shapes of collisionTypeA and shapes of
collisionTypeB. The callbacksTable is a table of the form:

{
 begin = function(arbiter, space, callbacksTable) ... return bool end,
 preSolve = function(arbiter, space, callbacksTable) ... return bool end,
 postSolve = function(arbiter, space, callbacksTable) ... end,
 separate = function(arbiter, space, callbacksTable) ... end
}

Document generated by Confluence on Feb 20, 2012 13:48 Page 94

If the begin handler or preSolve handler return false, further collision calculations are bypassed. If they
return true, the collision processing proceeds as normal.

It is not necessary to provide handlers for all callback table entries. Default handling will be provided for
unspecified handlers.

Returns self.

See http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for
an explanation of collision processing and collision handler callbacks.

One important point to note is that these callback handlers must not add or remove Bodies,
Shapes, or Constraints from the Space.

See the post-step callback functions for the right way to remove (or add) objects as the
result of a collision.

Introduced in platform.apiLevel = '2.0'

addPostStepCallback

self = physics.Space:addPostStepCallback(body|shape|constraint, function(space, object) ... end)

Parameter Type Description

self in physics.Space The input simulation Space

body or shape or constraint in physics.Body or
physics.Shape or
physics.Constraint

A simulation object that will
receive attention after the
simulation step

function in function(space, object) The callback function to run
against the simulation object at
the end of the simulation step

self out physics.Space The input Space is returned as
the output

Adds a callback function to be called when the current step is finished. One callback may be registered
per Body, Shape, or Constraint. Only the first callback for a given object is registered. Any attempt to
register another callback for the same object is ignored.

Returns self.

Introduced in platform.apiLevel = '2.0'

addShape

self = physics.Space:addShape(shape)

Parameter Type Description

self in physics.Space The input simulation Space

http://files.slembcke.net/chipmunk/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Document generated by Confluence on Feb 20, 2012 13:48 Page 95

shape in physics.Shape Adds the Shape to the
simulation Space

self out physics.Space The input Space is returned as
the output

Adds a Shape to the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

addStaticShape

self = physics.Space:addStaticShape(staticShape)

Parameter Type Description

self in physics.Space The input simulation Space

staticShape in physics.Shape Adds the static Shape to the
simulation Space

self out physics.Space The input Space is returned as
the output

Adds a static Shape to the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

damping

d = physics.Space:damping()

Parameter Type Description

self in physics.Space The input simulation Space

d out number The amount of damping of the
simulation Space

Introduced in platform.apiLevel = '2.0'

data

obj = physics.Space:data()

Parameter Type Description

Document generated by Confluence on Feb 20, 2012 13:48 Page 96

self in physics.Space The input simulation Space

obj out Lua object The programmer specified object
associated with the Space

self out physics.Space The input Space is returned as
the output

Introduced in platform.apiLevel = '2.0'

elasticIterations

iters = physics.Space:elasticIterations()

Parameter Type Description

self in physics.Space The input simulation Space

iters out number The number of iterations to use
in the impulse solver to solve
elastic collisions

Introduced in platform.apiLevel = '2.0'

gravity

grav = physics.Space:gravity()

Parameter Type Description

self in physics.Space The input simulation Space

grav out physics.Vect The gravity force vector applied
to all Bodies in the simulation
Space.

Introduced in platform.apiLevel = '2.0'

idleSpeedThreshold

speed = physics.Space:idleSpeedThreshold()

Parameter Type Description

self in physics.Space The input simulation Space

Document generated by Confluence on Feb 20, 2012 13:48 Page 97

speed out number Threshold speed

Introduced in platform.apiLevel = '2.0'

iterations

iters = physics.Space:iterations()

Parameter Type Description

self in physics.Space The input simulation Space

iters out number The number of iterations the
solver takes to update one step
of the simulation

Introduced in platform.apiLevel = '2.0'

rehashShape

self = physics.Space:rehashShape(shape)

Parameter Type Description

self in physics.Space The input simulation Space

shape in shape The shape to rehash

self out physics.Space The input Space is returned as
the output

Update an individual static shape that has moved.

Returns self.

Introduced in platform.apiLevel = '2.0'

rehashStatic

self = physics.Space:rehashStatic()

Parameter Type Description

self in physics.Space The input simulation Space

Document generated by Confluence on Feb 20, 2012 13:48 Page 98

self out physics.Space The input Space is returned as
the output

Rehashes the shapes in the static spatial hash. You must call this if you move any static shapes or
Chipmunk won't update their collision detection data.

Returns self.

Introduced in platform.apiLevel = '2.0'

removeBody

self = physics.Space:removeBody(body)

Parameter Type Description

self in physics.Space The input simulation Space

body in physics.Body A Body to remove from the
simulation Space

self out physics.Space The input Space is returned as
the output

Removes a Body from the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

removeConstraint

self = physics.Space:removeConstraint(constraint)

Parameter Type Description

self in physics.Space The input simulation Space

constraint in physics.Constraint A Constraint to remove from the
simulation Space

self out physics.Space The input Space is returned as
the output

Removes a Constraint from the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 99

removeShape

self = physics.Space:removeShape(shape)

Parameter Type Description

self in physics.Space The input simulation Space

shape in physics.Shape A Shape to remove from the
simulation Space

self out physics.Space The input Space is returned as
the output

Removes a Shape from the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

removeStaticShape

physics.Space:removeStaticShape(staticShape)

Parameter Type Description

self in physics.Space The input simulation Space

staticShape in physics.Shape A static Shape to remove from
the simulation Space

self out physics.Space The input Space is returned as
the output

Removes a static Shape from the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

resizeActiveHash

self = physics.Space:resizeActiveHash(dim, count)

Parameter Type Description

self in physics.Space The input simulation Space

dim in number The length of one side of a hash
cell. Default is 100

Document generated by Confluence on Feb 20, 2012 13:48 Page 100

count in number The number of cells in the hash
table. Default is 1000

self out physics.Space The input Space is returned as
the output

The spatial hash of active shapes can be tuned to improve collision detection. dim establishes the
size of a hash cell (default 100), and count sets the number of hash cells (default 1000). dim should
approximate the side length of a typical Shape. A good rule of thumb is to set count to about ten times
the number of Shapes in the space.

Introduced in platform.apiLevel = '2.0'

resizeStaticHash

self = physics.Space:resizeStaticHash(dim, count)

Parameter Type Description

self in physics.Space The input simulation Space

dim in number The length of one side of a hash
cell. Default is 100

count in number The number of cells in the hash
table. Default is 1000

self out physics.Space The input Space is returned as
the output

This routine configures the spatial hash of static Shapes. Configure this similarly to resizeActiveHash but
for static Shapes.

Introduced in platform.apiLevel = '2.0'

setDamping

Damping drains speed from bodies in the simulation. A value of 0.9 means that each body will lose 10%
of its speed per second. Defaults to 1. This value can be overridden on a per body basis.

self = physics.Space:setDamping(d)

Parameter Type Description

self in physics.Space The input simulation Space

d in number The new amount of damping for
the simulation Space

self out physics.Space The input Space is returned as
the output

Document generated by Confluence on Feb 20, 2012 13:48 Page 101

Amount of viscous damping to apply to the Space.

May not behave as expected for d larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

setData

self = physics.Space:setData(obj)

Parameter Type Description

self in physics.Space The input simulation Space

obj in Lua object A programmer specified object

self out physics.Space The input Space is returned as
the output

The programmer can store any Lua object in this field.

Introduced in platform.apiLevel = '2.0'

setElasticIterations

self = physics.Space:setElasticIterations(iters)

Parameter Type Description

self in physics.Space The input simulation Space

iters in number The number of iterations to use
in the impulse solver to solve
elastic collisions. Defaults to 0

self out physics.Space The input Space is returned as
the output

Introduced in platform.apiLevel = '2.0'

setGravity

self = physics.Space:setGravity(grav)

Parameter Type Description

Document generated by Confluence on Feb 20, 2012 13:48 Page 102

self in physics.Space The input simulation Space

grav in physics.Vect The gravity force vector
applied to all Bodies in the
simulation Space. Defaults to
physics.Vect(0, 0)

self out physics.Space The input Space is returned as
the output

Global gravity applied to the Space. Can be overridden on a per body basis by writing custom integration
functions.

Introduced in platform.apiLevel = '2.0'

setIdleSpeedThreshold

self = physics.Space:setIdleSpeedThreshold(speed)

Parameter Type Description

self in physics.Space The input simulation Space

speed in number Threshold speed

self out physics.Space The input Space is returned as
the output

The idleSpeedThreshold is the speed below which a body is considered to be idle. This value is used to
determine when a body can be put to sleep.

Introduced in platform.apiLevel = '2.0'

setIterations

self = physics.Space:setIterations(iters)

Parameter Type Description

self in physics.Space The input simulation Space

iters in number Number of iterations to refine
the accuracy of the solver.
Default is 10

self out physics.Space The input Space is returned as
the output

This value allows the programmer to control the accuracy of the solver. Default is 10.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 103

setSleepTimeThreshold

self = physics.Space:setSleepTimeThreshold(sleep)

Parameter Type Description

self in physics.Space The input simulation Space

sleep in number The amount of time (seconds)
below which time if a Shape has
not moved, it is put to sleep

self out physics.Space The input Space is returned as
the output

Sleep time threshold is used to calculate when a Body can be put to sleep.

Introduced in platform.apiLevel = '2.0'

sleepTimeThreshold

sleep = physics.Space:sleepTimeThreshold()

Parameter Type Description

self in physics.Space The input simulation Space

sleep out number The threshold time used to
determine when a Shape can be
put to sleep

Introduced in platform.apiLevel = '2.0'

step

self = physics.Space:step(dt)

Parameter Type Description

self in physics.Space The input simulation Space

dt in number The length of time (seconds) of
one step of the simulation

self out physics.Space The input Space is returned as
the output

Document generated by Confluence on Feb 20, 2012 13:48 Page 104

Updates the Space for the given time step dt. A fixed time step is recommended and increases the
efficiency of the contact persistence, requiring an order of magnitude fewer iterations and lower CPU
usage.

Returns self.

Introduced in platform.apiLevel = '2.0'

Constraints

All Constraints share common accessors.

Accessors Type Description

bodyA physics.Body The first Body that the
Constraint acts on

bodyB physics.Body The second Body that the
Constaint acts on

setBiasCoef, biasCoef number The fraction of error corrected
each step of the simulation.
Defaults to 0.1. May not behave
as expected for numbers larger
than 1.0 or less than 0.

setData, data Lua object A programmer-defined object

impulse number Calculated impulse applied
by the Constraint in the last
simulation step. To convert this
to the magnitude of the force,
divide by the time step passed
to physics.Space:step()

setMaxBias, maxBias number Maximum speed the Constraint
can apply error correction.
Defaults to INFINITY

setMaxForce, maxForce number Magnitude of maximum force
the Constraint can use to act
on the two Bodies. Defaults to
INFINITY

Damped Rotary Spring

spring = physics.DampedRotarySpring(a, b, restAngle, stiffness, damping)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

Document generated by Confluence on Feb 20, 2012 13:48 Page 105

restAngle in number Relative angle in radians that
the Bodies want to maintain

stiffness in number The spring constant

damping in number How soft to make the damping
of the spring

spring out
physics.DampedRotarySpring

New DampedRotarySpring

Like a damped spring, but works in an angular fashion. restAngle is the relative angle in radians that the
Bodies want to have, stiffness and damping work basically the same as on a damped spring.

Accessors Type

setRestAngle, restAngle number

setStiffness, stiffness number

setDamping, damping number

Introduced in platform.apiLevel = '2.0'

Damped Spring

spring = physics.DampedSpring(a, b, anchr1, anchr2, restLength, stiffness, damping)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

anchr1 in physics.Vect Anchor point to first Body

anchr2 in physics.Vect Anchor point to second Body

restLength in number The distance the spring want to
maintain between its Bodies

stiffness in number The spring constant

damping in number How soft to make the damping
of the spring

spring out physics.DampedSpring New DampedSpring

Defined much like a SlideJoint. restLength is the distance the spring wants to be, stiffness is the spring
constant, and damping is how soft to make the damping of the spring.

Accessors Type

Document generated by Confluence on Feb 20, 2012 13:48 Page 106

setAnchr1, anchr1 physics.Vect

setAnchr2, anchr2 physics.Vect

setRestLength, restLength number

setStiffness, stiffness number

setDamping, damping number

Introduced in platform.apiLevel = '2.0'

Gear Joint

joint = physics.GearJoint(a, b, phase, ratio)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

phase in number The initial angular offset in
radians of the two Bodies

ratio in number Ratio of velocities between the
two Bodies

joint out physics.GearJoint New GearJoint

Keeps the angular velocity ratio of a pair of Bodies constant. ratio is always measured in absolute terms.
phase is the initial angular offset of the two bodies.

Accessors Type

setPhase, phase number

setRatio, ratio number

Introduced in platform.apiLevel = '2.0'

Groove Joint

joint = physics.GrooveJoint(a, b, grooveA, grooveB, anchr2)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

Document generated by Confluence on Feb 20, 2012 13:48 Page 107

grooveA in physics.Vect One end point of the groove

grooveB in physics.Vect The other end point of the
groove

anchr2 in physics.Vect The pivot point of Body b

joint out physics.GlooveJoint New GlooveJoint

The groove goes from grooveA to grooveB on Body a, and the pivot is attached to anchr2 on Body b. All
coordinates are body local.

Accessors Type

setAnchr2, anchr2 physics.Vect

setGrooveA, grooveA physics.Vect

setGrooveB, grooveB physics.Vect

grooveN physics.Vect

Introduced in platform.apiLevel = '2.0'

Pin Joint

joint = physics.PinJoint(a, b, anchr1, anchr2)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

anchr1 in physics.Vect The anchor point on Body a

anchr2 in physics.Vect The anchor point on Body b

joint out physics.PinJoint New PinJoint

a and b are the two bodies to connect, and anchr1 and anchr2 are the anchor points on those bodies.
The distance between the two anchor points is measured when the joint is created. If you want to set a
specific distance, use the setter function to override it.

Accessors Type

setAnchr1, anchr1 physics.Vect

setAnchr2, anchr2 physics.Vect

setDist, dist number

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 108

Pivot Joint

joint = physics.PivotJoint(a, b, pivot)
joint = physics.PivotJoint(a, b, anchr1, anchr2)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

pivot in physics.Vect Point of pivot between the two
Bodies

anchr1 in physics.Vect The anchor point on Body a

anchr2 in physics.Vect The anchor point on Body b

joint out physics.PivotJoint New PivotJoint

a and b are the two bodies to connect, and pivot is the point in world coordinates of the pivot. Because
the pivot location is given in world coordinates, you must have the bodies moved into the correct
positions already. Alternatively you can specify the joint based on a pair of anchor points, but make sure
you have the bodies in the right place as the joint will fix itself as soon as you start simulating the Space.

Accessors Type

setAnchr1, anchr1 physics.Vect

setAnchr2, anchr2 physics.Vect

Introduced in platform.apiLevel = '2.0'

Ratchet Joint

joint = physics.RatchetJoint(a, b, phase, ratchet)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

phase in number Initial offset in radians

ratchet in number The distance in radians between
clicks of the ratchet

joint out physics.RatchetJoint New RatchetJoint

Works like a socket wrench. ratchet is the distance between clicks, phase is the initial offset to use when
deciding where the ratchet angles are.

Document generated by Confluence on Feb 20, 2012 13:48 Page 109

Accessors Type

setAngle, angle number

setPhase, phase number

setRatchet, ratchet number

Introduced in platform.apiLevel = '2.0'

Rotary Limit Joint

joint = physics.RotaryLimitJoint(a, b, min, max)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

min in number The minimum angular distance
in radians

max in number The maximum angular distance
in radians

joint out physics.RotaryLimitJoint New RotaryLimitJoint

Constrains the relative rotations of two bodies. min and max are the angular limits in radians. It is
implemented so that it is possible for the range to be greater than a full revolution.

Accessors Type

setMin, min number

setMax, max number

Introduced in platform.apiLevel = '2.0'

Simple Motor

motor = physics.SimpleMotor(a, b, rate)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

Document generated by Confluence on Feb 20, 2012 13:48 Page 110

rate in number The relative angular velocity

motor out physics.SimpleMotor New SimpleMotor

Keeps the relative angular velocity of a pair of bodies constant. rate is the desired relative angular
velocity.

Accessors Type

setRate, rate number

Introduced in platform.apiLevel = '2.0'

Slide Joints

joint = physics.SlideJoint(a, b, anchr1, anchr2, min, max)

Parameter Type Description

a in physics.Body First Body

b in physics.Body Second Body

anchr1 in physics.Vect The anchor point on Body a

anchr2 in physics.Vect The anchor point on Body b

min in number Minimum distance between
Bodies

max in number Maximum distance between
Bodies

joint out physics.SlideJoint New SlideJoint

a and b are the two bodies to connect, anchr1 and anchr2 are the anchor points on those bodies, and min
and max define the allowed distances of the anchor points.

Accessors Type

setAnchr1, anchr1 physics.Vect

setAnchr2, anchr2 physics.Vect

setMin, min number

setMax, max number

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 111

Arbiters and Collision Pairs

The Arbiter class encapsulates information about each pair of collisions.

#

count = #physics.Arbiter

Returns the number of contact points in this Arbiter.

Introduced in platform.apiLevel = '2.0'

a

shape = physics.Arbiter:a()

Parameter Type Description

self in physics.Arbiter The input Arbiter

shape out physics.Shape The first Shape in the collision
pair

Returns Shape a (the first shape) in a collision pair.

Introduced in platform.apiLevel = '2.0'

b

shape = physics.Arbiter:b()

Parameter Type Description

self in physics.Arbiter The input Arbiter

shape out physics.Shape The second Shape in the
collision pair

Returns Shape b (the second shape) in a collision pair.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 112

bodies

bodyA, bodyB = physics.Arbiter:bodies()

Parameter Type Description

self in physics.Arbiter The input Arbiter

bodyA out physics.Body The first Body in the collision
pair

bodyB out physics.Body The second Body in the collision
pair

Returns bodyA and bodyB in the collision pair.

Introduced in platform.apiLevel = '2.0'

depth

d = physics.Arbiter:depth(i)

Parameter Type Description

self in physics.Arbiter The input Arbiter

i in number A contact point number

d out number The penetration depth of the ith
contact point

Returns the penetration depth of the ith contact or nil if i is out of range of the number of contact points.

Introduced in platform.apiLevel = '2.0'

elasticity

e = physics.Arbiter:elasticity()

Parameter Type Description

self in physics.Arbiter The input Arbiter

e out number The calculated elasticity of the
collision

Returns the calculated elasticity of this collision pair.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 113

friction

f = physics.Arbiter:friction()

Parameter Type Description

self in physics.Arbiter The input Arbiter

f out number The calculated friction of the
collision

Returns the calculated friction of this collision pair.

Introduced in platform.apiLevel = '2.0'

impulse

ivec = physics.Arbiter:impulse([friction])

Parameter Type Description

self in physics.Arbiter The input Arbiter

friction in boolean If true, the calculated friction is
included in the calculation

ivec out physics.Vect The vector impulse applied to
resolve the collision

Returns the vector impulse that was applied this step to resolve the collision. If friction is true (default
false), then the calculated friction is taken into account.

Introduced in platform.apiLevel = '2.0'

isFirstContact

bool = physics.Arbiter:isFirstContact()

Parameter Type Description

self in physics.Arbiter The input Arbiter

bool out boolean True if this is the first step that
the Shapes touched

Returns true if this is the first step that the Shapes touched. This information only persists until a step
when the shapes are no

Document generated by Confluence on Feb 20, 2012 13:48 Page 114

longer touching. Once they are no longer touching this flag is reset.

Introduced in platform.apiLevel = '2.0'

normal

nvec = physics.Arbiter:normal(i)

Parameter Type Description

self in physics.Arbiter The input Arbiter

i in number A contact point number

nvec out physics.Vect Vector normal to the ith contact
point

Returns the collision normal vector for the ith contact point. Returns nil if i is out of the range of the
number of contact points.

Introduced in platform.apiLevel = '2.0'

point

pvec = physics.Arbiter:point(i)

Parameter Type Description

self in physics.Arbiter The input Arbiter

i in number A contact point number

pvec out physics.Vect The position of the ith contact
point

Returns the position of the ith contact point. Returns nil if i is out of the range of the number of contact
points.

Introduced in platform.apiLevel = '2.0'

setElasticity

self = physics.Arbiter:setElasticity(e)

Parameter Type Description

self in physics.Arbiter The input Arbiter

Document generated by Confluence on Feb 20, 2012 13:48 Page 115

e in number Elasticity of the collision

self out physics.Arbier The input Arbiter is returned as
the output

Overrides the calculated elasticity of the collision.

May not behave as expected for e larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

setFriction

self = physics.Arbiter:setFriction(friction)

Parameter Type Description

self in physics.Arbiter The input Arbiter

f in number Friction in the collision

self out physics.Arbier The input Arbiter is returned as
the output

Overrides the calculated friction of the collision.

May not behave as expected for f larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

shapes

shapeA, shapeB = physics.Arbiter:shapes()

Parameter Type Description

self in physics.Arbiter The input Arbiter

shapeA out physics.Shape The first Shape in the collision

shapeB out physics.Shape The second Shape in the
collision

Returns shapeA and shapeB in the order they were defined in the collision handler associated with this
Arbiter.

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 116

totalImpulse

ivec = physics.Arbiter:totalImpulse()

Parameter Type Description

self in physics.Arbiter The input Arbiter

ivec out physics.Vect The vector impulse applied to
resolve the collision

Returns the vector impulse that was applied this step to resolve the collision.

Introduced in platform.apiLevel = '2.0'

totalImpulseWithFriction

ivec = physics.Arbiter:totalImpulseWithFriction()

Parameter Type Description

self in physics.Arbiter The input Arbiter

ivec out physics.Vect The vector impulse applied to
resolve the collision

Returns the vector impulse that was applied this step to resolve the collision. The calculated friction is
taken into account.

Introduced in platform.apiLevel = '2.0'

Shape Queries

pointQuery

bool = physics.Shape:pointQuery(point)

Parameter Type Description

self in physics.Shape The input Shape

point in physics.Vect A point

bool out boolean True if point lies within the
bounds of Shape

Document generated by Confluence on Feb 20, 2012 13:48 Page 117

Returns true if point lies within the Shape.

Introduced in platform.apiLevel = '2.0'

segmentQuery

info = physics.Shape:segmentQuery(vecta, vectb)

Parameter Type Description

self in physics.Shape The input Shape

vecta in physics.Vect One end point of the segment

vectb in physics.Vect The other end point of the
segment

info out physics.SegmentQueryInfo Information about where the
segment and Shape intersect.
Nil if no intersection

Checks if the line segment from vecta to vectb intersects the Shape. Returns a SegmentQueryInfo object
with the result of the query or nil if no intersection.

If a segment query starts inside of a shape then the result is somewhat undefined. Circles
and polygons will not report a collision with that shape, and segments will report an
incorrect point and normal if they do detect a collision with that shape. To get around this
deficiency, use a separate point query to determine if the segment query starts inside of a
shape.

See the SegmentQueryInfo methods below for helper routines to convert the results to
world coordinates or absolute distance.

Introduced in platform.apiLevel = '2.0'

Space Queries

pointQuery

physics.Space:pointQuery(point, layers, group, function(shape) ... end)

Parameter Type Description

self in physics.Space The input Space

point in physics.Vect A point

layers in number A bitmap of the layers. Match if
shape.layers intersects layers

Document generated by Confluence on Feb 20, 2012 13:48 Page 118

group in number The group number to check.
Match if Shape is not in group

function function(shape) A function to call providing each
Shape in turn that matches the
criteria

Queries the Space for all shapes that contain point and match layers but not in group. The function is
called with each matching Shape. Sensor Shapes are included.

Introduced in platform.apiLevel = '2.0'

pointQueryFirst

shape = physics.Space:pointQueryFirst(point, layers, group)

Parameter Type Description

self in physics.Space The input Space

point in physics.Vect A point

layers in number A bitmap of the layers. Match if
shape.layers intersects layers

group in number The group number to check.
Match if Shape is not in group

Queries Space at point and returns the first Shape that matches the given layers and and not in group.
Returns nil if no Shape was found. Sensor Shapes are ignored.

Introduced in platform.apiLevel = '2.0'

segmentQuery

physics.Space:segmentQuery(startvect, stopvect, layers, group, function(shape, t, normal) ... end)

Parameter Type Description

self in physics.Space The input Space

startvect in physics.Vect An end point of the segment

stopvect in physics.Vect Other end point of the segment

layers in number A bitmap of the layers. Math if
shape.layers intersects layers

group in number The group number to check.
Match if object is not in group

Document generated by Confluence on Feb 20, 2012 13:48 Page 119

function function(shape, t, normal) A function to call providing each
Shape in turn that matches the
criteria

Queries the Space for all Shapes that intersect the line segment from startvect to stopvect and match
layers and not in group. The function is called with each matching Shape. Sensor Shapes are included.

The callback function is called with each Shape, proportion of distance along the line segment (a fraction
from 0 to 1), and the surface normal vector of the intersection point of the Shape.

Introduced in platform.apiLevel = '2.0'

segmentQueryFirst

info = physics.Space:segmentQueryFirst(startvect, stopvect, layers, group)

Parameter Type Description

self in physics.Space The input Space

startvect in physics.Vect An end point of the segment

stopvect in physics.Vect Other end point of the segment

layers in number A bitmap of the layers. Matches
if shape.layers intersects layers

group in number The group number to check.
Matches if Shape is not in group

info out physics.SegmentQueryInfo Information about where the
segment and Shape intersect.
Nil if no intersection

Queries Space along the line segment from startvect to stopvect and returns the first intersecting Shape
that matches layers and not in group. Returns a SegmentQueryInfo object with the first Shape that
matches the query or nil if no intersection.

Introduced in platform.apiLevel = '2.0'

SegmentQueryInfo

A SegmentQueryInfo object is a Lua dictionary table with three fields.

Key Value

shape Shape object found in a query.

t Fractional distance (0 .. 1) from the start of the
line segment to the intersection of the Shape.

n Surface normal vector of the Shape at the
intersection point.

Document generated by Confluence on Feb 20, 2012 13:48 Page 120

This object also has the following helper routines which convert information in a SegmentQueryInfo
object to world coordinates or an absolute distance along the line segment.

hitDist

d = SegmentQueryInfo:hitDist(startvect, stopvect)

Parameter Type Description

self in physics.SegmentQueryInfo The input SegmentQueryInfo

startvect in physics.Vect An end point of the segment

stopvect in physics.Vect Other end point of the segment

d out number Hit distance

Returns the absolute distance where the segment first hit the Shape.

Introduced in platform.apiLevel = '2.0'

hitPoint

p = SegmentQueryInfo:hitPoint(startvect, stopvect)

Parameter Type Description

self in physics.SegmentQueryInfo The input SegmentQueryInfo

startvect in physics.Vect An end point of the segment

stopvect in physics.Vect Other end point of the segment

p out physics.Vect Hit point

Returns the hit point in world coordinates where the segment between startvect and stopvect first
intersects the Shape.

Introduced in platform.apiLevel = '2.0'

Platform Library

Platform specific information is available through the platform library.

Document generated by Confluence on Feb 20, 2012 13:48 Page 121

apiLevel

platform.apiLevel

Uniquely identifies the Script API revision offered by a version of the Nspire.
Following list indicates currently supported script API revisions:

• '1.0'
• '2.0'

To know the current revision of the script API, read the platform.apiLevel.

print(platform.apiLevel)

Setting the API level allows scripts written in previous versions of Nspire to run on the current version.
The default value is set to highest revision value supported in the current Nspire version.

Platform.apiLevel = '1.0' -- Change the API level to '1.0'

Note

• If script needs to change script API level, platform.apilevel = 'X.X' should be the first
line of the script

• If present, the platform.apiLevel = 'X.X' statement should be only in main part of the
script. It should not be inside event handler functions.

• As of now, if a script consists of statement 'platform.apiLevel = 'X.X'' and the script is
loaded using 'dostring()' then it might not work as expected.

Introduced in platform.apilevel = '2.0'

gc

platform.gc()

Returns a dummy graphics context. It is typically used to measure pixel lengths and heights of strings
when a normal graphics context is not available. This may be the case when creating new text elements
when the script app is initialized. A graphics context is available only during paint events, and that may
be too late to create and size the containers for text fields.

This graphics context should not be used to draw graphics since it is not guaranteed to be associated with
a window.

Here is an example of using the dummy graphics context to get the pixel length and height of a string.

local gc = platform.gc() -- Get the dummy graphics context
gc:begin() -- Make it the current graphics context
local width = gc:getStringWidth(a_string) -- Get the pixel length of a_string
local height = gc:getStringHeight(a_string) -- Get the pixel height of a_string

Document generated by Confluence on Feb 20, 2012 13:48 Page 122

gc:finish() -- Restore previous graphics context

It is important to use gc:begin() to set up the graphics context before using it in the getString function
and to call gc:finish() to relinquish it when finished with it.

Introduced in platform.apilevel = '1.0'
Removed in platform.apilevel = '2.0'

hw

platform.hw()

Returns a numeric value indicative of the CPU speed of the host hardware. The higher the number, that
faster the hardware.

level host hardware

3 TI-Nspire B&W and CX hand-held devices

7 Windows, Macintosh, web player

Introduced in platform.apilevel = '2.0'

isColorDisplay

platform.isColorDisplay()

Returns true if the display of the host platform is color. Returns false if the display is gray scale.

Introduced in platform.apilevel = '1.0'

isDeviceModeRendering

platform.isDeviceModeRendering()

Returns true if the script is running on the hand-held device or in the emulator of the desktop software.
Returns false if the script is running in the normal view of the desktop software.

platform.isDeviceModeRendering is not available during script initialization or within
on.restore.

Introduced in platform.apilevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 123

registerErrorHandler

platform.registerErrorHandler(function(lineNumber, errorMessage, callStack, locals) ... end)

This function sets the error handler callback function for the script. Setting an error handler callback
function provides control over what happens when an error is encountered in the script. Returning a true
value quietly kills the script and prevents any error reporting to the gui.

The error handler callback function will not be called for errors that occur during
initialization or within on.restore.

Introduced in platform.apilevel = '2.0'

window

platform.window

Returns the window object currently owned by the script application. The window consists of the portion
of the page allotted to the script app. Several applications can be visible when the page is arranged in a
split layout. Each visible application has its own window.

The window object has several methods of particular interest.

Introduced in platform.apilevel = '1.0'

height and width

platform.window:height()
platform.window:width()

Routines height() and width() return the pixel height and width respectively of the display window.

Introduced in platform.apilevel = '1.0'

invalidate

platform.window:invalidate(x, y, width, height)

This function invalidates a region of the window and forces it to repaint. x and y default to (0, 0) and
width and height default to the pixel width and height of the window. The entire window can be forced to
repaint with a call to platform.window:invalidate() allowing all parameters to take their default values.

Introduced in platform.apilevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 124

setFocus

platform.window:setFocus(true or false)

This function sets the focus to the main window. Any focus of other objects is removed (D2Editor).

Introduced in platform.apilevel = '2.0'

setPreferredSize - DO NOT DOCUMENT

Warning

The function platform.window:setPreferredSize(width, height) is not available to the
customer.

platform.window:setPreferredSize(width, height)

This function sets the size of the drawable area on the screen. If this is larger than the available screen
area scroll-bars will be automatically added. if it is smaller ...???

Introduced in platform.apilevel = '2.0'

withGC

platform.withGC(function, args)

Executes function(args) within a dummy graphics context and returns all return values from function().
It is typically used to measure pixel lengths and heights of strings when a normal graphics context is
not available. This may be the case when creating new text elements when the script app is initialized.
A graphics context is available only during paint events, and that may be too late to create and size the
containers for text fields.

This graphics context should not be used to draw graphics since it is not associated with a window.

Here is an example of using withGC() to get the pixel length and height of a string.

function setFont(family, style, size, gc)
 f, s, z = gc:setFont(family, style, size) -- Set the font to use
end

function getHeightWidth(str, gc)
 width = gc:getStringWidth(str) -- Get the pixel length of str
 height = gc:getStringHeight(str) -- Get the pixel height of str
 return height, width
end

platform.withGC(setFont, 'serif', 'b', 12)
height, width = platform.withGC(getHeightWidth, 'Hello World')

Note: You could combine the two functions above into a single function to avoid calling withGC() twice,
but that is not required as the dummy graphiocs context remembers it's state.

Document generated by Confluence on Feb 20, 2012 13:48 Page 125

Introduced in platform.apilevel = '2.0'

Require Library

require ''

Tell Nspire to load the named library. To save memory, some Nspire libraries are not loaded automatically.
The libraries that are conditionally loaded are:

Library Require Syntax

Color require 'color'

Physics require 'physics'

Introduced in platform.apiLevel = '2.0'

String Library Extension

In addition to the standard Lua string functions there are a few routines which aid handling Unicode
strings.

split

string.split(str [,delim])

Divides str into substrings based on a delimiter, returning a list of the substrings. The default pattern for
the delimiter is white space ("%s+").

Introduced in platform.apiLevel = '1.0'

uchar

string.uchar(chnum, ...)

Unicode characters may be included in strings by encoding them in UTF-8. This routine converts one or
more Unicode character numbers into a UTF-8 string.

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 126

usub

string.usub(str, startpos, endpos)
or
str:usub(startpos, endpos)

print(string.usub("abc", 1, 1)) -- prints "a"
print(string.usub("abc", 2, 2)) -- prints "b"
print(string.usub("abc", 2, 3)) -- prints "bc"

This routine returns a substring of str. It is the Unicode version of string.sub. It accounts for multi-byte
characters encoded in UTF-8.

Caution

This is an expensive routine. It allocates a temporary memory buffer during its operation.

Introduced in platform.apiLevel = '1.0'

Timer Library

Each script application has one timer at its disposal. The resolution of the timer depends on the platform.
It is about 0.01 seconds on the hand-held device.

The script application should implement the "on.timer()" function to respond to timer ticks.

The timer continues to send ticks to the script application even when its window is not visible on the
screen.

The timer is automatically stopped when the document containing the script application is closed or if the
script application is deleted from the document.

getMilliSecCounter

timer.getMilliSecCounter()

Returns the value of the internal millisecond counter. The counter rolls over to zero when it passes 2 32

milliseconds.

Introduced in platform.apiLevel = '1.0'

start

timer.start(period)

Starts the timer with the given period in seconds. The period must be >= 0.01 (10 ms). If the timer is
already running when this routine is called, the timer is reset to the new period.

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 127

stop

timer.stop()

Stops the timer.

Introduced in platform.apiLevel = '1.0'

Tool Palette Library

The tool palette provides a menu of commands from which the user can select commands which invoke
functionality of the script app.

register

toolpalette.register(menuStructure)

The script app uses this routine to register its tool palette with the Nspire framework. The menu structure
is a table describing the name of each tool box, the menus that appear in each tool box, and the function
to call when the user invokes the menu item.

This example serves to demonstrate the layout of a tool palette's menu structure.

menu = {
{"Mode", -- Tool box "Mode"
{"Decimal", setDec}, -- Menu item "Decimal" calls function setDec()
{"Hexadecimal", setHex},
{"Octal", setOct},
{"Binary", setBin},
"-", -- Section divider
{"Signed", setSigned},
{"Unsigned", setUnsigned},
},
{"Boolean",
{"And", binopAnd},
{"Or", binopOr},
{"XOr", binopXor},
{"Not", unopNot},
},
}
toolpalette.register(menu)

toolpalette.register may be called once in the top level flow of the script app. Once registered, the tool
palette is managed automatically by the Nspire framework. Up to 15 toolboxes can be created with up to
30 menu items each.

When the user chooses an item from a tool box, the associated function is called with two parameters:
the name of the tool box and the name of the menu item.

Document generated by Confluence on Feb 20, 2012 13:48 Page 128

Beginning with platform.apilevel = '2.0', the names of tool palette items may be changed
dynamically while the program is running.

Calling toolpalette.register(nil) deactivates the toolpalette.

Introduced in platform.apiLevel = '1.0'

enable

toolpalette.enable(toolname, itemname, enable)

This routine enables or disables a menu item in the tool palette. toolname is a string containing the name
of the top level tool box. itemname is a string containing the name of the menu item. enable is a boolean
value which enables the menu item if true or disables the menu item if false.

This routine returns true if the menu item was properly enabled or disabled. It returns nil if the
toolname / itemname pair cannot be found in the registered menu items.

NOTE

toolpalette.register() must be called prior to calling toolpalette.enable()

Introduced in platform.apiLevel = '1.0'

enableCut

toolpalette.enableCut(enable)

This routine enables or disables the Edit > Cut menu command. enable is a boolean value which enables
the command if true or disables the menu item if false.

Introduced in platform.apiLevel = '1.0'

enableCopy

toolpalette.enableCopy(enable)

This routine enables or disables the Edit > Copy menu command. enable is a boolean value which enables
the command if true or disables the menu item if false.

Introduced in platform.apiLevel = '1.0'

enablePaste

Document generated by Confluence on Feb 20, 2012 13:48 Page 129

toolpalette.enablePaste(enable)

This routine enables or disables the Edit > Paste menu command. enable is a boolean value which
enables the command if true or disables the menu item if false.

Introduced in platform.apiLevel = '1.0'

Variable Library

A symbol table is used by the Nspire math engine to calculate and store variables. This library gives
scripts access to the variables stored in the symbol table.

Not all variables in the symbol table have compatible types in Lua. But many important variable types are
supported: real and integer numbers, strings, and lists of numbers and strings, matrices (represented in
Lua as lists of lists), and boolean constants true and false.

list

var.list()

This function returns a list of names of variables currently defined in the symbol table.

Introduced in platform.apiLevel = '1.0'

makeNumericList

var.makeNumericList(name)

Creates a list in the symbol table with the given name. The list is optimized to hold numeric values.
Routines storeAt and recallAt operate much more efficiently on lists that are created with this function.

Usage Note

This function cannot be used to create a numeric matrix. Routines var.recallAt and
var.storeAt documented below will work with matrices but only if they are created by some
other means.

var.store("mat", {{1,2}, {3,4}}) -- create matrix mat in the symbol table
var.storeAt("mat", 13.3, 1, 1)
val = var.recallAt("mat", 1, 1)

Introduced in platform.apiLevel = '2.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 130

monitor

var.monitor(name)

Turns on monitoring of the math variable with given name. Whenever another application changes
the math variable, this script application's on.varChange handler is called. See the description of
on.varChange below.
Any other return value from 0 is an error value.

Introduced in platform.apiLevel = '1.0'

recall

var.recall(name)

Returns the value of a math variable with the given name. If the type of the named variable has no
compatible Lua type, then nil and an error message are returned.

Introduced in platform.apiLevel = '1.0'

recallAt

var.recallAt(name, col [,row])

Recalls a value from a cell of a list or matrix in the symbol table. col is a 1-based column number of the
matrix or list. row is a 1-based row number. row is only required when recalling a value from a matrix.

This function is optimized to work with numeric values and normally returns a number. If the value of the
recalled cell is not numeric, this function returns nil and an error message string.

Introduced in platform.apiLevel = '2.0'

recallStr

var.recallStr(name)

Returns the value of a math variable with the given name as a string. Some math types have no
compatible Lua type but all math types can be represented as a string. If the value cannot be recalled
even as a string, this function returns nil and an error message.

Introduced in platform.apiLevel = '1.0'

Document generated by Confluence on Feb 20, 2012 13:48 Page 131

store

var.store(name, value)

Stores value as a math variable with the given name. If the value cannot be stored, then an error
message is returned. Otherwise, nil is returned.

Introduced in platform.apiLevel = '1.0'

storeAt

var.storeAt(name, numericValue, col [, row])

Stores a numeric value into an element of a math list or matrix with the given name. col is a 1-based
column number of the matrix or list. row is a 1-based row number. row is only required when storing a
value into a matrix.

The value must be numeric. Any other type will raise an error.

New values can be appended to a list by storing to one column past the end of the list. This function is
particularly useful as an optimization when adding new values to a list during a simulation.

Returns nil on success or "cannot store" if the value cannot be stored at the given index.

Introduced in platform.apiLevel = '2.0'

unmonitor

var.unmonitor(name)

Turns off monitoring of the named math variable.

Introduced in platform.apiLevel = '1.0'

Background Image Library - DO NOT
DOCUMENT

Warning

The Background Image Library is not available to the customer.

Enables manipulation of background images (image widgets) from a Lua script. Allows the user to control
where the image is inserted, resize the image, select/unselect the image and enable/disable inserting (or
pasting) of images into the script application

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 132

API functions

enable

image.background:enable(true or false)

Setting this option to true enables inserting of background images.

Introduced in platform.apiLevel = 'X.X'

height

image.background:height()

Returns the background image height as an integer.

Introduced in platform.apiLevel = 'X.X'

width

image.background:width()

Returns the background image width as an integer.

Introduced in platform.apiLevel = 'X.X'

x

image.background:x()

Returns the x coordinate of the upper left corner of the image.

Introduced in platform.apiLevel = 'X.X'

y

image.background:y()

Returns the y coordinate of the upper left corner of the image.

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 133

setSize

image.background:setSize(width, height [, preserveAspectRatio])

Sets the image width and height with or without preserving the aspect ratio.

If preserveAspectRatio is set to true (default setting), the aspect ratio of the image is preserved and the
image is resized to the largest size that fits inside width x height. If it is set to false, aspect ratio of the
image is not preserved.

Introduced in platform.apiLevel = 'X.X'

setPosition

image.background:setPosition (x, y)

Sets the x and y coordinates of the upper left corner of the image

Introduced in platform.apiLevel = 'X.X'

select

image.background:select(true or false)

Select / unselect the image. Selecting a background image enables the image widget context menu and
allows the user to cut, copy, paste and delete the image. It also allows to move and resize the image.

Note: The ESC key unselects the image (default image widget behavior)

Introduced in platform.apiLevel = 'X.X'

hasImage

image.background:hasImage()

Returns true if a backgound image is present, false otherwise

Introduced in platform.apiLevel = 'X.X'

isSelected

image.background:isSelected()

Returns true if an image is selected, false otherwise

Document generated by Confluence on Feb 20, 2012 13:48 Page 134

Callbacks:

insertImage

on.insertImage()

Called when image is inserted, on undo/redo and paste. This callback is not called when insert image is
undone.

Introduced in platform.apiLevel = 'X.X'

deleteImage

on.deleteImage()

Called when image is deleted and on undo insert image

Introduced in platform.apiLevel = 'X.X'

imageSizeChanged

on.imageSizeChanged(x, y, w, h)

Called with the x & y coordinates of the upper left corner of the image and the new image width & height
when user resizes or moves the image. The image must be selected before it can be moved or resized.

Introduced in platform.apiLevel = 'X.X'

Config Panel Library - DO NOT DOCUMENT

Warning

The Config Panel Library is not available for the customer.

The config panel module provides the routines used to interface with the Navigator config panel.

Config Panel management

createConfigPanel

configpanel.createConfigPanel()

Begins the config panel creation.

Parameters

• None

Document generated by Confluence on Feb 20, 2012 13:48 Page 135

Returns

• A non-nil value if successful, nil otherwise.

Introduced in platform.apiLevel = 'X.X'

showConfigPanel

configpanel.showConfigPanel()

Commits the config panel creation to the application.

Parameters

• None

Returns

• void

Introduced in platform.apiLevel = 'X.X'

destroy

configpanel.destroy()

Removes and frees resources used for the current config panel, can be called programmatically or by the
runtime.

Parameters

• None

Returns

• void

Introduced in platform.apiLevel = 'X.X'

CheckBox

addCheckBox

configpanel.addCheckbox(panel, title, callback)

Adds a checkbox to the selected panel with the specified title and callback

Parameters

• Panel. The panel where the checkbox is to be added.
• Title. The text that will be associated with the checkbox
• Callback. The function that will be called when the checkbox is clicked.

Returns

• A checkbox user type that can be used to query its status.

Document generated by Confluence on Feb 20, 2012 13:48 Page 136

Introduced in platform.apiLevel = 'X.X'

isChecked

checkbox:isChecked()

Returns the current state of the calling checkbox.

Parameters

• None

Returns

• True if the calling checkbox is selected.

Introduced in platform.apiLevel = 'X.X'

CollapsiblePane

newCollapsiblePane

configpanel.newCollapsiblePane(title)

Adds a new collapsible pane with the specified title.

Parameters

• Title. Text that will be displayed at the top of the collapsible pane.

Returns

• A collapsible pane user type that can be used to modify its status.

Introduced in platform.apiLevel = 'X.X'

getContentPane

collapsiblepane:getContentPane()

Gets the content pane to which components can be added.

Parameters

• None

Returns

• A content panel that is a UIComponent user type that can be used to modify its status.

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 137

setExpandedStatus

collapsiblepane:setExpandedStatus(status)

Sets the calling collapsible pane's status.

Parameters

• Status. An integer that indicates open or closed state.

Returns

• None

Introduced in platform.apiLevel = 'X.X'

ComboBox

addComboBox

configpanel.addComboBox(panel, {options}, callback)

Adds a combobox or dropdown to the specified panel with the options and callback being sent in.

Parameters

• Panel. The panel where the combobox is to be added.
• Options. A table that contains the texts that will be associated with the combobox
• Callback. The function that will be called when the combobox's value changes.

Returns

• A combobox user type that can be used to modify and query its status.

Introduced in platform.apiLevel = 'X.X'

getSelectedIndex

combobox:getSelectedIndex()

Returns the currently selected index. Note, this index is 1-based unlike C or Java.

Parameters

• None

Returns

• Returns the currently selected index. Note, this index is 1-based unlike C or Java.

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 138

setSelectedIndex

combobox:setSelectedIndex(index)

Used to set the current selected index programmatically.

Parameters

• Index. The 1-based index to be selected.

Returns

• None

Introduced in platform.apiLevel = 'X.X'

Label

addLabel

configpanel.addLabel(container, text, tooltip)

Adds a label to the specified panel, with the text and tooltips specified.

Parameters

• Panel. The panel where the label is to be added.
• Text. The text that the label displays on the config panel.
• Tooltip. The text that the label displays when the user puts the mouse cursor over it.

Returns

• A Label user data type that can be used to be associated with other components.

Introduced in platform.apiLevel = 'X.X'

Multiple Response Box

addMultipleResponseBox

configpanel.addMultipleResponseBox(panel, {options}, callback)

Adds a label to the specified panel, with the text and tooltips specified.

Parameters

• Panel. The panel where the multiple response box is to be added.
• Options. A table that contains the texts that will be associated with the multiple response box
• Callback. The function that will be called when the multiple response box's value changes.

Returns

• A multiple response box user type that can be used to modify and query its status.

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 139

changeSelectionMode

mrcombobox:changeSelectionMode(mode)

Sets the selection mode for the calling multiple response box. This is used to enable multiple responses, i.
e. more than one response at a time or a single response at a time.

Parameters

• Mode. The selection mode that is to be used.

Returns

• None

Introduced in platform.apiLevel = 'X.X'

setSelectedItem

mrcombobox:setSelectedItem(index, selected)

Sets the specified index to whatever value selected is.

Parameters

• Index. The 1-based index whose selected value is to be set.
• Selected. A boolean that indicates if an index should be selected or not.

Returns

• None

Introduced in platform.apiLevel = 'X.X'

changeItem

 mrcombobox:changeItem(text, index)

Changes the text for the specified index.

Parameters

• Text. The text to set.
• Index. The 1-based index whose text value is to be set.

Returns

• None

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 140

addItem

 mrcombobox:.addItem(text, index)

Adds the specified text on the selected index, pushing the rest to their next indices if necessary.

Parameters

• Text. The text to set.
• Index. The 1-based index whose text value is to be set.

Returns

• None

Introduced in platform.apiLevel = 'X.X'

deleteItem

 mrcombobox:deleteItem(index)

Deletes the item at the specified index.

Parameters

• Index. The 1-based index to delete.

Returns

• None

Introduced in platform.apiLevel = 'X.X'

isItemSelected

 mrcombobox:isItemSelected(index)

Checks if the specified index is selected.

Parameters

• Index. The 1-based index to check.

Returns

• True if the specified intex is selected, false otherwise.

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 141

SpinBox

addSpinBox

 configpanel.addSpinBox(pane, initial, max, min, callback)

Adds an integer spinbox to the specified panel with the initial, maximum/minimum values and callback
being sent in.

Parameters

• Panel. The panel where the combobox is to be added.
• Initial. A number that indicates the first value to be displayed on the spinbox
• Max. A number that indicates the maximum accepted value to be displayed on the spinbox
• Min. A number that indicates the minimum accepted value to be displayed on the spinbox
• Callback. The function that will be called when the spinbox value changes.

Returns

• A spinbox user type that can be used to modify and query its status.

Introduced in platform.apiLevel = 'X.X'

getValue

spinbox:getValue()

Gets the current value stored in the spinbox.

Parameters

• None.

Returns

• An integer value that corresponds with the current value on the calling spinbnox.

Introduced in platform.apiLevel = 'X.X'

setValue

spinbox:(value)

Sets the value for the spinbox programmatically, clamped to the previously specified maximum and
minimim values.

Parameters

• Value. An integer that will be the value for the spinbox.r

Returns

• None.

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 142

TextEntry

addTextEntry

configpanel.addTextEntry(panel, text, callback)

Adds a textentry to the specified panel with the text and callback being sent in.

Parameters

• Panel. The panel where the textentry is to be added.
• Text. A string that will be thedefault text for the component.
• Callback. The function that will be called when the textentry's value changes.

Returns

• A textentry user type that can be used to modify and query its status.

Introduced in platform.apiLevel = 'X.X'

getExpression

textentry:getExpression()

Gets the text entry's expression.

Parameters

• None.

Returns

• A string with the text entry's expression.

Introduced in platform.apiLevel = 'X.X'

setExpression

textentry.setExpression(string)

Sets the calling text entry's expression.

Parameters

• Expression. A string with the expression to be shown on the text entry.

Returns

• None.

Introduced in platform.apiLevel = 'X.X'

Document generated by Confluence on Feb 20, 2012 13:48 Page 143

Question and Answer - DO NOT DOCUMENT

Warning

The Q&A module is not available to the customer.

The Q&A module provides the routines used to interface with the Navigator question activities
infrastructure.

isWidgetInQuestion

qna.isWidgetInQuestion()

Returns true if the script is running in a question app. False otherwise.

Introduced in platform.apiLevel = 'X.X'

sendQuestionResponse

qna.sendQuestionResponse(string)

Sends the response to a question to Navigator.

Introduced in platform.apiLevel = 'X.X'

isStudentMode

qna.isStudentMode()

Returns true if the script is running in a student environment. False otherwise.

Introduced in platform.apiLevel = 'X.X'

getQuestionType

qna.getQuestionType()

Returns the question type associated with the document. The first 2 values are for our internally
implemented Image Question types, 3 is for all other script questions.

Value Type

1 Point

2 Label

3 Script

Document generated by Confluence on Feb 20, 2012 13:48 Page 144

Introduced in platform.apiLevel = 'X.X'

Callbacks

As of platform.apilevel = 'X.X' there are also some callbacks to which a script must answer in order to
take advantage of the question architecture's full potential.

showCorrectAnswers

qna.showCorrectAnswers(boolean)

If the argument passed is true, the script should show some visual cue for which the correct answers are.

Introduced in platform.apiLevel = 'X.X'

isCorrectAnswerProvided

qna.isCorrectAnswerProvided()

Should return true if the user has set up correct answers. False otherwise.

Introduced in platform.apiLevel = 'X.X'

isQuestionAnswered

qna.isQuestionAnswered()

Should return true if the user has selected an answer regardless of correctness. False otherwise.

Introduced in platform.apiLevel = 'X.X'

getQuestionStatus

qna.getQuestionStatus()

Returns an integer that represents the current status for the question:

Value Status

1 Unanswered

2 Unknown

3 Answered Incorrect

4 Answered Correct

5 Invalid

Document generated by Confluence on Feb 20, 2012 13:48 Page 145

Introduced in platform.apiLevel = 'X.X'

clearStudentResponse

qna.clearStudentResponse()

Clears the user's responses.

Introduced in platform.apiLevel = 'X.X'

